AD-A172 738 THN‘KING ABOUT NON-LINEAR SMOOTHERSCU) PRINCETON UNIV
DEPT OF STATISTICS J W TUKEY MAY 86 TR-291-SER-2

RRO-23360. 4-MA DARLB3I-86-K-8073
UNCLASSIFIED F/G 12/1

---- .




Lt

-~
%‘

- -
-
-

RTTr T
F

-
-
e

3

o
e

o e
A ot 4 ‘c'

2 v G Yk

AL AN e ly

. Mt g s doe st

‘..‘.‘.l

e s

ol

o

l

I
I

I

FFEERRT

el
e

it e

r
rer

l

)
(3

i

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A




UNCLASSIFIED
URITY CLASSIFICATION HIS PA

. . AD-A172 738 ®)

REPORT DOCUMENTATION PAGE

172 REPORT SECURITY CLASSIFICATION DTl c :
N > LR R

[ 2a. SECURITY CLASSIFICATION AUT

1b. RESTRICTIVE MARKINGS

3. DISTRIBUTION / AVAILABILITY OF REPORT

75 DECLASSIFICATION / COWNGRADRG Approved for public release;

distribution unlimited.
5. MONITORING QRGANIZATION REPORT NUMBER(S)
ARO 23360.4-MA

4. PERFORMING ORGANIZATION R

6a. NAME OF PERFORMING ORGAMNIZATION 6b. OFFICE SYMBOL'“T 7a. NAME OF MONITORING ORGANIZATION
Princeton University (If applicable) ]
U. S. Army Research Office

6¢. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

P. 0. Box 12211

Princeton, NJ 08540 Research Triangle Park, NC 27709-2211

8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable) '
U. S. Army Research Office DAALO3-86-K-0073
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
P. 0. Box 12211 ELEMENT NO. |NO. NO. ACCESSION NO.

Research Triangle Park, NC 27709-2211

11. TITLE (Include Security Classification)
Thinking About Non-Linear Smoothers

12. PERSONAL AUTHOR(S)

13a. TYPE OF REPORT 13b. TIME COVERED 14I'PATE 3F gEPORT (Year, Month, Day) [S. PAGE COUNT
echnica FROM T0 ay 198 116

16. SUPPLEMENTARY NOTATION . .. . ) ,
The view, opinions and/or findings contained in this report are those

f ..
of _the authgr(s) .and shiuld not be,constﬁuﬁd as, an gfﬁg%g}nDeggrtment of the Army position,

17. COSAT!I CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP

Nonlinear Smoothers Smoothing

Nonlinearity Linear Smoothing

19. ABSTRACT ¢ ntinue on reverse if necessary and identify by block number)
Any kind of mmnoother is not easy to grapple with, either to understand or to

chooee, but non-linear smoothers - - often the smoothers to be preferred - - are
harder to grasp than the simpler, linear ones. The purpose of this account is to give
its readers some background with which to think about non-linear smoothers,

particularly resistant ones. It does not attempt the task - - probably today quite

OTIC FILE COPY :

unfeasible - - of providing a comprehensive guide to which smoother to use where

and when.

-
20. DiSTridUTION/ AVAILANLITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

OuncrassiFieounumiTed O same As RPT. ] OTIC USERS l'nclassified

223. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) | 22¢. OFFICE SYMBOL

DD FORM 1‘73, 84 MAR RS . 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete.

UNCLASSIFIED




o A A Ao 33360 .4.,

Thinking about non-linear smoothers

NN | by
f.“ﬂ. John W. Tukey

f o‘v.ﬁg Princeton University
?:s“:p Fine m
Washington Road
- Princeton, NJ 08544

Technical Report No. 291, (Series 2)
“ Departnient of Statistics
za: : Princeton University

W May 1986

Wi Prepared in part in connection with research at Princeton University
0 sponsored by the Army Research Ofice (Durham), DAAL03-86-K-0073.

1A Ao, L e W By 0 A%y d o Y B AT A P A O O A LT T e
DI DR DA U DAL U sl S 1 N AL ARG 5. SV 2 MY NS Y g

g wf.. q gt 0%y
“ ‘J ¥ .(’l.‘-.l;. S ."‘.‘?"l» ]



i
i
§

e

-

. 'r A’J
- 2

“." ‘.l . . ‘ - -
WO

Thinking about non-linear smoothers

John W. Tukey
Princeton University
Fine Hall
Washington Road
Princeton, New Jersey 08544 1
TABLE OF CONTENTS
|
|
1. Introduction 1
non-linearity 1
smosining and smoothers 2
some purpoues 2
modes of description 4
plan S
scope 5
PART I. SOME KINDS OF BEHAVIOR 6
2. Problems and strivings 6
a short problem list 6
erosion 6
tenting 9
diversity 10
further diversity 1
balance or compromise 11
non-singleness 14
3. Near linearity 15
IS-Boxes 15
quadratic and bilinear boxes 16 . {
IQ-, ISS-boxes 16 ‘
linear PLUS quadratic boxes 17 — T
IH-boxes — proportionality 17 —‘g:
IP-boxes - polynomiality 18 : 0
WS-, WX-, and WP- boxes - except at the ends 19 ; 0
4. Angular frequenceies 20 e
transfer functions 21 -
blurred transfer functions 22 ~
transport functions 23
blurred transport functions 25 _W
intermodulation functions 25 RN
o w
| Did . ngll(
]
TR A 5 2 R A M B e R e e




‘4ag R R TR o R R R T T S TR AT ST TR FWNETERS TV
o
«}'f*\k i l ’
ok,
::‘:Q
8 "
Ly
i some dmgers 26
. a warning example 26
3! Mallows’ linear closest 28
e S. Simple benchmarks 29
t ;:I kinds of simple benchmarks 29
& reraigh 1 %
: ght lines 30
' polynomials 31
Wy, box cars and towers 31
Sty binomial bumps 32
:::}' single-color sinusoids 33
en combinations of the above 34
s closing comment 4
73* 6. Distribution-based benchmarks 34
J.I,,.: Gaussian noises, some white 34
jcd stretch-tailed noises - - mostly white 35
: _ combinations among simple benchmarks .......... 35
e PART 2. SOME CLASSES OF SMOOTHERS ...................... 36
S 7. Median-based components 36
(s kinds of median e 36
3 :'.‘:: warning about °2°, °4", 37
8 selectors and semiselectors 37
to the death 38
:c ., Foots v 38
b ghe sh ( Jcomponents 39
s g and b "
Ko igher 39
: 40
e 40
E::':{' 3 40
|: discussion 41
«,‘:::' :onmkhy 41
. 42
:i:: ) head banging 42
ihhe the H component 42
:Q:::' end values and S 43
_:% 3 splitting 43 |
_ 8. Median-based smoothers - - assembling components “ |
ANE connectives 44 ‘
W stranding 45
o
B spacing 46
. 5.:_, condensation for global monotonicity 47
- historical account 47
7. . 9. Swoosh-swoosh smoothers 48
Y $-LOCK 49
i.')-




;:‘i:.; T m————
PO - .
e
e
10N
AT ENDS 49
e intraswoosh amoothing s2
\:\i . another revision 60
}3::1 a lesson 65
; "_;“' ] ' : choosing the cutoff 65
T, suggestions 66
) should the cutoff be smoothed? 66
4 drift in emphasis 67
oo 10. Detrivialization 67
o a class of indicator functions 67
oy rank rather than value 6
A 11. *Super smoothers” 63
s 12. Smoothing within bounds 2
X &'.:ﬁ 13. Functionalization 72
e 14. Approaches to equivariance 73
X 15. A very different application 75
: Py 16. Conclusions 75
r :::: diversity 75
2Ry delicacy 75
.\"}- exoticity 76
b experimentation 76
’ erosion 76
oA reader’s suggestion 76
bt APPENDIX A : Antirobust non-linear smoothers and the Beveridge
X {& wheat-price series 77
AR Al The character of the Beveridge series 7
o A2. The XH3RP smooth 80
- A3. Possible/plausible modifications _ 85
L ) A4. Smoothing the peak-to-peak changes 89
ni AS. Detrivialization to smoothness 89
[{n7 APPENDIX B: More on “local linear” smoothers 100
R Bl. Recent work at Stanford 100
’ B2. Comments on “locally-linear® fitting 101
i::f' B3. Cleveland’s lowess 102
b B4 Smelting 103
5508 APPENDIX C: A looming strategy 105
e Cl. Modifying Friedman’s variable-span smoother 105
¢ C2. Carvature adjustment 109
e C3. Improving Cleveland’s lowess m
e XH a poesibility 112

R e U O L T R S S TN, 1 J
R A N Bt A e AT NI O A A AT -':l
SRIIN P AN Y RIS S S PRI N I Y T N, :'.'r..'.'_'.' T



-

.- >

s

{3
()

SO P P AT S S TN S PL IR A
b -'6‘_':"-1 e "'v“ 4‘ s v *\'& "\.".'i" , .' H

Thinking about non-linear smoothers
John W. Tukey
Technical Report No. 291, (Series 2)
Department of Statistics
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Any kind of smoother is not easy to grapple with, either to understand or to
chooee, but non-linear smoothers - - of ten the smoothers to be preferred - - are
harder to grasp than the simpler, linear ones. The purpose of this account is to give
its readers some background with which to think about noh-linear smoothers,
particularly resistant ones. It does not attempt the task - - probably today qguite
unfeasible - - of providing a comprehensive guide to which smoother to use where

and when.

* non-lineari b

The word “non-linear” does not look too different from the word "linear®, but
similarity of appearance covers up a tremendous difference in scope. Think of the
wlimdaysofthemckntﬁuhwhmtheirlhipmmtmme
Mediterranian Sea - - and the then difference between “Mediterranian® and "non-
Mediterranian®. As Western history evolved “non-Mediterranian® grew to include
the Bay of Biscay, the East Coast of Africa, the Atlantic, Indian and Pacific Oceans
and distinctive land areas on many continents. More recently areas on the moon,
and limited aspects of the surface of a number of planets have to be included. What
non-Mediterranian” covers is now much more diverse than what “Mediterranian®
ever covered, and the relative diversity is still growing. The relation of “non-
linear” to *linear’ - - in any field, not just in smoothing - - is like that of “non-

Prepared in connection with resesrch at Princeton Univenity sponsoved by the Army Ressarch Ofice (Dur-
ham) through DAALO3-86-K-0073.
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1

Mediterranian” to “Mediterranian®. So we ought to expect the discovery and
exploration of one interesting area after another - - some which are quite simjlar to
*linear® and some of which are quite different. We will need new tools - - in the
Mediterranian, the Greeks had little need for either ice axes or parachutes - - and
new ways of looking at the phenomena we uncover.

It is not easy to remember that the non-linear might prove to be infinitely more

diverse than the linear, but we ought to try.

* smoothing and smoothers *

The processes of smoothing - - and the algorithms that carry them out - - surely
have purpoees, but it is often not easy to be explicit what these purposes are. (We
will return shortly to some of them.) And it is quite clear that

a) there are qualitatively different purposes,

b) they often have to be compromised, AND

) quantitatively different compromises of the same purposes are often needed.

As a result, even linear smoothing involves a broad repertory of detailed processes
and algorithms - - and is not at all easy to think about. Making choices among linear
smoothers is not easy; the writer knows of no book that explains "how to choose” in

a really helpful manner. (Often, no linear smoother is able to do what is needed.)

With both “smoothing” and “non-linear® in such difficult hard-to-handle states,
is it any surprise that thinking about their combination “non-linear smoothers” is
not easy? And will not be made easy by reading this paper? Or by reading any
book that can be conceived today?

¢ some purposes *
There are a diversity of purposes for which smoothing seems appropriate.
Some of them can be identified without too much trouble, including:
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d) taking the "sharp corners” off data to be plotted, so that the viewer’s eye-
and-brain (of ten abbreviated “eye”) can see appropriate general aspects of the

data’s behavior better (otherwise isolated points, for instance, often seize more
attention than they deserve),

e) ridding the data of much of the irrelevant variation that contributes to each
of its numbers, without disturbing too seriously the slower changes that reflect
the changing underlying causes that are, in those particular instances our real
concern,

f) preparing the data for further processing, especially for further processing
that - - like the eye - - would beovcrseuitiﬁtoinegﬁhﬂtiec.

g) separating, and setting aside, more rapid changes from less rapid ones, at

least to whatever degree is possible.

These purposes may sound rather similar, but close scrutiny - - especially of the
smoothers to which they lead - - will show not only their distinctness, but a great
diversity of need within each of them. We will try, in this paper, to help with
thinking about purposes and about the relation of choices to purposes, but all of us
need to admit that there is no substitute for practice - - and especially for practice
that leads, many times over, to comparison of the ¢ffects of different exampies of such
choices on either real or simulated data - - better on both.

Further purposes that may not, at Jeast at first glance, seem like smoothing are:

h) preserving the breaks or sharp corners that might prove important, while |
eliminating the little wiggles that are likely to distract the eye, AND

1) catering to parsimony by replacing heavily smoothed results by closed form
functions expressed by simple formulas.

But these really do belong to the same broad class of purposes.

The relation of smoothing to forecasting is thought to be simple and close by
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some, but less 90 by others.

* modes of description *

How do we want to describe

smoothers = processes of smoothing

in a way or ways that will be most helpful? The answer here is equally not
straightforward. To explain why, we will gain by listing the more obvious modes
in which we often need to describe a smoother (which we assume has already been
given a labelk

P Algorithms - - descriptions of the details of the successive steps from input to

output,

k) Strivings - - what properties/behavior we have tried to build into each of our

smoothers, and how vigorously we have pursued them,

m) Benchmarks - - how each of our smoothers behaves - - qualitatively and

quantitatively - - in a well-chosen set of standard situations,

n) Properties - - what we can say, in varying generality, about how each
smoother performs - - this may be qualitative or quantitative, and is likely to
overlap, to a limited degree, with “Benchmarks®.

We are, in most subareas, early in our study of non-linear smoothers. As as
consequence, we of ten have to emphasize algorithms, and perhaps strivings. If we
knew more, we would be able to emphasize benchmarks and properties, which would
be to our great advantage. Just looking at an algorithm - - even for one experienced

in smoother design - - is a poor way - - of ten a very poor way - - to understand how

the smoother in question will perform.

Clearly we - - or someone - - has to know an algorithm, else we or our

computers would not be able to apply it. However,inferring very much about

behavior directly from the algorithm is not at all easy - - of ten it is impossible. The




Wy . ' -5.
:'. :

% algorithm makes the label realizable. Only trial - - perhaps by ourselves on a

:‘ x limited number of examples, but not infrequently, fortunately, by others on more
\ extensive and more diverse examples, is likely to lead to useful insight into its

? . detailed behavior, since few aspects of general behavior have so far proved

‘,:: accessible to mathematical argument, even for some smoothers or some components
F::; of them. (Most smoothers that will interest us here are assembled from

::" components.)

> : * plan *

N} : The body of this account, which now follows, tries to develop two frameworks;

one for kinds of description, and one for the presently most attractive classes of

* )';: smoothers, in the hope that the two will help each of us in thinking about non-

E' linear smoothers and non-linear smoothing. Both explicit discussion and examples

! will be confined to one-dimensional smoothing, but we need to notice that some of
’ :: the more valuable applications are to two-dimensional data — usually to images.
A
Detailed descriptions and characteristics of individual smoothers are at most
V«’ mentioned as examples. (At some later time, some extension, perhaps an appendix to
. "E: this account, might arise to present such information.) A

5

r * scope *
," While, as just noted, something is known about smoothing for values scattered
> in the plane, etc, we will here only be concerned with smoothing of finite sequences,
- where the data consists of a finite set of numbers indexed by integers or by more or
b ..__-_ less regularly spaced numbers (ties among the index values, however, not excluded).
b Z There is, in principle, an important distinction between equi-spaced and non-
" equi-spaced sequences. There are times when we do recognize this distinction. But
k: the behavior of many of the methods that we discuss does not seem responsive to
"-‘( this distinction. As a result, we have often to recommend treating non-equally-
M
E::;

oy - : . . .
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i-'(" spaced sequences in the same way we would recommend if they were equally spaced.
i This is particularly true with median-based smoothers.
Lo y)
R
f:?.; | PART L SOME KINDS OF BEHAVIOR
X “w
L E R B R R J 3 2858888
€98 2. Problems and strivings
Ll -}-
3.::\‘: Strivings, here as elsewhere, arise as we struggle with problems. So we ought
AU
‘9 to begin with some of the clearly recognizable problems.
.. N AN
o ¢ ashort problem list *
e .
f‘;- It is now time, therefore, to identif'y some of the most prominent technical
o
L2 problems, with the intention of shortly discussing each in turn:
- :'. a) erosion - - the tendency of smoothers, especially naive ones, to “wear down
.\.l
o the peaks and fill in the valleys®.
A b) tenting - - the tendency of linear smoothers to respond to a single, exotically
u'_:l'
'_':\f. high value by constructing a “"tent” below it, and, by symmetry, to respond to a
o
2! single, exotically low value by constructing an inverted tent above it.
J
‘j'_: c) diversity - - the fact that a particular property of a smoother may be an
g
:.:.fz advantage in some situations, but a disadvantage in others
ot
y d) balance - - the need, in choosing a smoother, to balance incommensurables - -
' Q:; as when greater smoothness of result requires the smoothed values to be not as
' »
s close to the originally given values ("balance” seems more elegant than
W8
g “compromise”, but the idea is the same).
d v_':-'
‘ 4 * erosion *
T
-
":'.-, The existence of erosion causes many smooths to be shrunk toward a common
T value, global or sectional. To correct this, we need to begin by comparing, in some
E_'; way, the smooth with the data. One simple and useful way is to introduce the rough,
3

---- LR N Y
e v“':‘ \\',.wk": A
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~. 23 according to the identity
® data =smooth + rough
: -«“‘54
":-35: and to seek evidence for needed modification of the smooth from the behavior of the
e
oy rough.
P . .
R :‘ If we find systematic behavior in the rough, it is natural to want to transfer
1SAAS
! ”\: that systematic behavior from rough to smooth. Often, the simplest way to do this
n
) is to smooth the rough, and then start from the two identities
i
data =smooth + rough
e
'\uj rough = (smooth of rough) + (rough of rough)
i and to substitute the second in the first, inserting appropriate brackets, to reach
“~
N
A data =[ smooth + ( smooth of rough )] + [(rough of rough)]
P~y
>
4 ;“
s It is now natural to take
$__ new smooth = smooth + (smooth of rough)
N;x new rough = rough of rough
ln
_ _ . and to describe the process as reraughing. (If the second smoother is the same as the
J N first, we alternatively refer to the process as rwicing.)
N
-f"' Many ways of dealing with erosion that were initially described in other ways
can be put into the form of reroughing. Any kind of correction that depends only on
Eha
:;’:3 the values of the rough - - anything which does not look at the smooth - - isa
L
X 2 process that accepts a sequence - - the rough - - and produces a sequence consisting of:
g the values to be taken out of the rough for insertion in the smooth. This process,
'R
b since it generates a smoother sequence from an input sequence (here the first rough)
! : can be regarded as a smoother. Its application can thus be considered reroughing.
”fi If we are to seek more general ways of dealing with erosion, then, we must look
B’
& 4
o 4 at the smooth as well as the rough. This means that we need to try to distinguish
,‘ .
'l N
"'f. o P L R ML e et Rt st e mt s e N et e m e et AT PR " h" . e T "M MM AT e A A"

SNt T N R e e . et AR e s M, ey e R Tt .
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‘,-ij peaks, that will be cut down, from valleys, that will be filled up - - and to
L
- distinguish both from upward or downward inclines. One simple approach, not
\|‘ N
§¢: supposed to be perfect or even highly effective, would be to look at a second
:t: difference of the smooth, spread out over a moderate range of the index.
et If we adopt
L o
)
% y = data
et =
'x' Z; = smooth
i\ O
(N r, = rough
" " where, of course,
& “:’
:‘ :;;tj Yi Bz +r;
A
‘E-" ‘ we could look at the values of such expressions as
he,
oL
"II . . +2i_3=2z;+2;4y
‘ :"."; Blt) = ——-
e }"(i) = +Z,'_‘-22,‘ +z,'“
N 8
) .;)._.
'.‘:5_:: or their analogs - - or some combination of these - - embedding them in some so-far
QL unspecified algorithm.
3:*( While these might be useful in building, probably after combination with
? _e."‘
i appropriate values of the rough, an effective erosion compensator for a linear
by . ‘.:
"} i smooth, we are likely to need a modified approach when dealing with non-linear
:-\. smoothers.
e
e
}_‘(2 For some of the simpler non-linear smoothers, we might consider
-, .
“:;’ Kyi) = median{~(y;~y;-3), 0, y;+3~¥:}
::::::. K{) = median{~(y, =y, 0, v ﬂ‘h'
" :
)
:.":. and so on, which only respond quite near either the top of a peak or the bottom of a
::;E::'s: valley. Little, if anything, seems to have been done about using such erodibility
::';::e:: indicators, either alone or in conjunction with the values of the rough.
LK
A
Wy
r‘
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; It is far from clear, however, whether there are practical circumstances where

the influence of reroughing away from peaks and valleys is unfortunate. Thus we

th :: do not really understand where, if anywhere, we would want such modified
‘g .'; .
“~ processes of transfer from rough to smooth.
L%
e . tenting *
4
W‘ If we take the simple sequence with a single exotic value, 144, 96, 132, 144, 108,
e
84, 60, 72, 48, 1200, 48, 24, 36, 50, 48, 84, 96, 132, 120, 144 and smooth by running
: 3 means of 3
2
: *‘3 Yi-rtyi +y,
i = i=1 (] i+l
o % 3
e we get the sequence 7, 124, 124, 128, 112, 84, 60, 440, 432, 424, 36, 40, 48, 64, 76, 104,
S
. “§ 116, 132,? which shows the rather square "tent" . . small, 440, 432, 424, smal, ... in
K
:3 place of the single exotic value . . small, 1200, small, ... . Further linear smoothing
;c:z will spread the tent out, probably slanting its edges somewhat, but the total size of
i} the tent will continue to resemble the roughly 1150 of the original single exotic
i 1}
)
Y, value’s deviation from the general run of its neighbors. No linear smooth will get us
R 'n!-‘ . away from this effect.
A
E :: :E The simplest way around tenting is to replace linear combinations by more
: robust summaries. The simplest of these are running medians, as when
A z; = median {y;y, yis Yis1) ¢3)
,;2 2, = median y; .y, yi—1, Yis Yien Yis2} ¢s”)
Y
) or, when we are willing for the smoothed values to come half-way between adjacent
\Tgad
A.
“f‘;l data values, as in
s
S »
:.“ 241/ 2 = median {y;, y, 1} ¢2")
— Zi 4y 2 = median {y; 1, Yi\Yi+10 Yie2) C4)
Y
)
::: A single isolated exotic value will be almost forgotten by "3°, *S" or "4", but not by
)
.‘l
‘fo".
W
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> 2
x We can, of course, make use of other robust summaries, such as biweights, or
) hubers. These are only likely to be chosen when we want to smooth more

N vigorously, and are looking at 8 or more values of y at a time.

> There are also important methods involving the robust fitting of straight lines,

¢ diversity *
; Some data sequences behave as if they bad a break at some intermediate
position in the sequence. 'l'heapparentbmkmyhea.changeinlml--orn
change in slope - - or something more complicated. The prototypic example of a
‘- change in level, uncomplicated by any irregularity, is something like
---6,0,0,0, 0, 0, 100, 100, 100, 100, 100, 100, - - -
Such smoother components as “3° or *5" will leave this break untouched (and the
\ whole sequence unaffected). Others, like *2° repeated, will do their best to put in a
smooth transition between 0 and 100. We cannot say generally which of these behaviors
' we prefer. For some kinds of data and some purposes we clearly prefer to have the
E break preserved - - for others we prefer a smooth transition.

The same is true of breaks in slope - - we will discuss an example in section 9
where it seems very natura) to preserve breaks in slope, and, conversely there are

~
~C many instances where this is not the case.

R The question of breaks is only one of a number of questions where the
direction of preference depends upon kind of data and kind of purpose. The main
Et Jesson to be learned from these issues of diversity is that we dare not look for s
single chosen smoother, to be recommended for use in any arbitrary situation. We
must offer the user a decent palette of smoothers - - and guidance in choosing among

them. This means, most importantly for our present concern, that the user has to

I . &
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expect to do some thinking about alternative smoothers - - and that the user ought to
expect to try more than one smoother on the same data whenever the details of the
outcome are important.
®* further diversity *
‘;;: N After the qualitative choices that we have just been discussing come a variety
o }“
éﬁ' > of quantitative choices - - shall we use a smoother based upon “3" or one based upon
oot
i) -
Mo 5°? - - shall we rerough only once, or do it again? These are often more difficult
, than the qualitative choices. All that we know how to do so far is to try to "include
LY
o
":j:s enough small-scale diversity in our palettes, without being excessive®. Just how we
Lo
* ) ought to set about making up such palettes is not something that has been adequately
NN considered.
RO
oo
oo
Sty * balance or compromise *
W
ey In the present case, our problem is complicated by incommensurability of what
22¢
TR . .
?M':I we are striving for - - the largest-scale-instance of which is
0,
& b reaching a smooth result, AND
‘i s keeping close to the original data
LN
oL
: These are aims that obviously tend to pull our choice in almost opposite directions.
[
)
— What is hard to face - - and a rock on which organized compromise can easily
; fzj founder - - is the apparent absence of any natural way to write down
0y
2 .\":t
')':'Z a measure of lack of smoothness, AND
a measure of deviation from the original data
B
3,‘.' D that are either in, or convertible 50 as to be in, comparable units.
N
e In classical robustness as applied to location, we have had to face a similar,
* 'f'_ much easier problem. When we are happy to work with performance under each of
[
::::..E 2 or 3 situations, which we are happy to compromise, we face the fact that, for
'.:'3’.

Pe el “An T ’ ‘ . " 0
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instance:

variance (or MSE) for a standard Gaussian, AND

variance (or MSE) for the standard slash

are not directly comparable. (Here the standard slash is the distribution of a unit
Gaussian divided by an independent unit rectangular [0,1].) In the first instance, we
can deal with this by asking what is the best - - the smallest variance or MSE - -

that we can do for Gauss alone or for slash alone, and then going over to

% excess variance

(excess over the minimum we know how to attain) both for Gauss and for slash (or
for each of the few situations that we consider).

Having done this, a first nataral thing to do seems to become minimaxers, to
seek a compromise that minimizes the maximum % excess variance (for two
alternatives, this means equating the two % excess variance). While it has not yet
become customary to go further than to seek a single compromise, it may throw
light om our preseat, more general problem if we try to take another step.

As a tentative proposition, in the case of only two alternatives, let us think
about proceeding as follows:

If the minimax % excess variance is E, identifying the symmetric compromise,
Jet us consider two satellite compromises (satellite in the spectroscopic sense), in
each of which one % excess is allowed to grow to E V2, while the other is made
as small as possible. (if we wish to go further, going to a % excess of 2E for one
alternative is conveniently called a dim satellite.

This satellite construction can be carried out for either a one-parameter family of
estimates or some larger class.

For the n =20 Gauss-slash compromise, this produces, for the one-step biweight

-------




1 . ' -13-
9 ' 13
R ‘-‘.‘ N
; family - - using the graphs in Bell and Morgenthaler, 1981 - -
N7, label tuning excess excess
= constant at Gauss atslash
_:c:f:_ - stellite 55 2%  76%
- symmetric 6.5 15% 15%
. satellite 7.8 8.7% 22%
e (dim satellite) 9 3.1% 31%
2} and for estimates bioptimal among all equivariant estimates
= shadow excess excess
,E label ratio at Gauss at slash
B stellite 2.1 6% - 25%
: symmetric 1.29 4.3% 4.3% .
R satellite £7 32% 6%
RO where the "shadow ratio” defines the linear combination of the two % excess
TN variances whose optimization gives the indicated estimates.

This whole approach is heavily undergirded by two facts

o the two criteria to be compromised have been made satisfactorily comparable

by changing from raw variance to % excess, AND

o the % excesses involved are all small (in our examples no more than 15% for

Wl the symmetric compromises).

b

R)

}:' When we try to use explicit compromises in the smoothing situation, it is not clear
that either of the analogous facts holds for any reasonable way of re-expressing our

N two measures of dissatisfaction.

It is possible, though it is not clear whether the details can be carried out, that

we can come to a comparable situation in the following indirect way:

@ Let us define a smallest tolerable amount of smoothing, and measure deviation

of smooth from the given data, as a % increase over this smallest amount (a

robust measure of deviation size, perhaps like 5,2, will be required).

B A N ANPGRS TN Q *, » ~ At AT [
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@ Let us define a largest tolerable amount of smoothing, and measure lack of

smoothness as a % increase of roughness over that corresponding to this

*heavy" smooth.

@ Then let us play the “satellite, symmetric, satellite” game.
Clearly no one knows whether or not this is a reasonable approach (without regard
to whether its result would be successful). It requires four difficult choices; two of
criteria and two of degree: criteria of lack of smoothness and of poorness of fit, and
greatest (because deviations from what was observed are otherwise unacceptable)
and least (because of lack of smoothness is otherwise unacceptable) degrees of
smoothing. Moreover, the compromised % excesses prc;bably cannot be allowed to be
t00 large.

We bave suggested an approach for two reasons:

@ it scems an effective way to make the difficulty of the problem clear, AND

® it may encourage the suggestion of other approaches.

* non-singleness *

An essential in current treatments of robustness, and in the approach to formal
compromise in smoothing just considered, is the focusing on single aspects - - in the
examples above on a pair of single aspects.

In the robustness-of-location instance, focusability was not obviously
guaranteed. We accepted the % excess variance measure, itself based on a variance
measure, because the shapes of the distributions of estimation errors of different
high-performance estimates are surprisingly similar. This is a bonus, whose
existence we have recognized as a consequence of much tedious experimental
sampling and of careful analysis of the results of such sampling; 8 bonus whose very
existence seems still to be beyond easy explanation. Even in that single instance, we

could hardly have counted on focusability in advance of experimental sampling - -

e LMW =0 T > O e oo
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even though we were dealing with distributions of error for single numbers.

e

4 When we come to deal with the smoothing instance, our situation is much
s
“ worse. Our concern is not just with a single output value, nor is it even with each
" P .
0, of the output values singly. There are many important aspects of quality of the
RO output that are much more holistic, either sectionally or globally. We have to look
Wi
g seriously at 2;, 241 ...-, 2; +m 23 2 Whole, not just as a collection of separate values.
1
Ml Indeed, we have to do this more importantly for the z's than for the y's.
. This is a type of criterion-invention problem with which we have inadequate .
. \" -
‘fl
:f‘ experience. So we need to push on and get some. This means not just writing down
B
" criteria - - much of that has been done to little avail. It means coming much more
f closely to grips, initially in verbal and vague terms, with what lack of smoothness
o
_.ﬁ ought to mean to us and why. (We do not attempt this here.)
NNt
ssssts 3. Near linearity ssssss
W |
s
Al
e ¢ 1S-boxes *

We use "box" to refer to any well-defined process with one or more inputs and

. an output.
%
’ ‘_,'.-\-\ A one-input “box” that is both super posable, namely satisfies
- output from a+b = (output from a) + (output from b)
)
s and invariant under changes in time origin
P>
1
== output from (a shifted in time by h) = (output from a, shifted in time by h)
f: -;,,(; is conveniently called an 1S-box, 1 for Invariant and S for Superposable. The notion
e
: *j of an IS box formalizes what is often called linearity. Thus IS boxes make up the !
(Y
KT Mediterranian from which we start. [
) .'l
XY
;E:E'.E If we are dealing with a sufficiently nearly linear processes, or, more generally, ‘
0
e ‘
u":;:‘ N
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3 .: with polynomial processes, we may find it appropriate to describe important aspects
e!
- of non-linear processes, including some non-linear smoothers, through simple (or
* . simple-seeming) modifications of the definition of 1S-boxes.
N |
0y $ quadratic and bilinear boxes *
7‘.’:; Following Tukey 1984 (Volume 1) pp. S84ff we shall use [ ] to denote the output
b
: »}g of a (homogeneous) quadratic box, where the input is given in the brackets. The
)
Sl simple identity
k> [a+b] + [a-b] = Aa] + 2b])
5%
o :
.. for all inputs "a” and"b" and their sums and differences is a simple and effective
n
a way to define what is quadratic without bothering about details. (This approach to
‘;k"\-:f“ polynomiality traces at least to the classic papers of Mazur and Orlicz (1935) on
%i::j; polynomial operations).
2¢d From the ideatity it is easy to show (see ibid pp. 584-585) that
h‘.':
% [0]=0
o
! and
e [ka) = k7]
‘¥
::"': for all rational k. Now only a touch of continuity is needed to give this relation for
b all real k.
o
::::: If we define <, >by
o
i3 2<u, v>=[ utv]-[u]-[v]) a *)
7R it is easy to show (ibid pp. 585-588) that
W
oY <a+h, c+d>= <a,c>+ <b c>+ <a, d>+ <d, d>
o
LV
= s0 that < > is linear in each of its inputs and is thus conveniently called bilinear.
)
~
. * 1Q-,1SS-boxes *
L
4

LY ™
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If we are dealing with more general boxes that are also time-origin-shift
invariant, we use “IQ-box” for a single-input box that is quadratic in the sense just
described and "ISS" for a two-input box that is bilinear (that is, superposable in each
input separately. A simple consequence of what we have indicated above (at (%) is

that:

@ given a few copies of an IQ-box, we can make an ISS-box
® given a few copies of an ISS-box, we can make an 1Q-box,

o if we follow one these constructions with the other, in either order, we

return to an equivalent of the box with which we started.

% linear-PLUS-quadratic boxes *

The gentle approach to non-linearity is to consider boxes that are
inhomogeneous quadratic in the sense that their output can be realized as the sum of
the outputs of 1S and IQ boxes sharing an input.

Schematically, we could write

10

This is a natural analog of the beginning of a simple power-series expansion. It is
easy to understand in frequency terms, as we will see in the next section. There are
kinds of non-linearity for which it is a useful beginning.

¢ JH-boxes - - proportionality *
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The statistician - - and, more generally, the data smoother - - is likely to be

much more drastic, when he or she considers being non-linear. Think of perhaps the

simplest of the non-linear smoothers, namely

running medians of 3
where

z, = medianly,_,, y,, y +1}

So far as we know, there is no useful polynomial representation - - surely there is
no linear-PLUS-quadratic representation - - for this smoother. It is almost utterly
non-polynomial.

It does satisfy a condition of homothety (proportionality), namely

output from (k times a) = k times (output from a)

(We probably also want good response to an additive constant, which it has.)

This shows easily that it can’t be linear-PLUS-quadratic since any linear piece
will satisfy this condition, but no quadratic piece can (they all require k2 on the
right, not k).

When it is convenient to have a notation for boxes that
@ are time-origin-shift Invariant, AND
o mtisfy the Homothety condition

we will call them [H-boxes. Clearly every IS-box is an IH-box, but not vice versa.
Clearly the only box that is both IQ and IH is the null box (all of whose outputs are
nall)

* [P-boxes - - polynomiality *
We could extend the ideas back of quadratic boxes, both homogeneous and

inhomogeneous, to more general polynomial boxes. (Orlicz and Mazur have the
appropriate identities.) We might use IP- box for any (inhomogeneous) polynomial
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6 box. And we would find that the only IP-boxes that are also [H-boxes are the IS-

g , boxes. For references to polynomial boxes in general see page 306 of Brillinger 1970.
>

:'}\ In a data-smoothing world where [H-boxes are the rule, focussing our attention

N., on polynomial boxes - - or on more general initial segments of power-series-like

e representations - - seems doomed to failure. The kinds of non-linearity we want to

Egi use are too drastic for such approaches.

e * WS-, WX-, and WP- boxes - - except at the ends ®

E‘ﬁ Our discussion of "nice” boxes always involved time-origin-shift invariance,

i :g involved "shifting an input by h". If this has no other effect than to time-shift the
L2 output, presumably this can be done as many times as we wish, something which
:-. implies unrestricted (and hence infinite) extent in time for both inputs and outputs.

§ Since we never seem to have inputs of wholly unrestricted length, something has

R gone awry here. What should be our stance?

e

.-;- Think about something rather simple, say smoothing by running medians of §
o

'i: 2; = median {yi_p Yi-1 ¥is Yi+1s Yis2}

. ‘ which, as it stands, is not de fined when i corresponds to one of the first two or last

:. ) -é two values of an input.

o

:Cf We have a choice

i. @ to let outputs be shorter than inputs, OR

: ?2 ® to define graceful degradations of our smoothers near the ends of the input.

45

5_' g ‘ Only if we have very long inputs does the first alternative have a reasonable chance
.:'_: of being acceptable. As we shall see, most non-linear smoothers concatenate

N \.2 individual smoothing components. When this occurs, the shortening from the

r’ ' overall process is the sum of the shortenings from the individual components, and

:: s§. may thus be quite large.

‘:R
LT WG Fa DT IR PN A NP PG S P PR R AR S LR CREN PR SLE RS Py AR e 1
ettt RN TS AT ML I I " " "' .-.c e e T L e

o
AR AR




)

000

> o o

LA
x xS F

[+

. vl
L
F R T

l.l.l:l:l," ‘l
f o WERE R

LY
» Y

D
L)

LA

L

-20-

So only the choice of some graceful degradation remains. If i goes from 1ton,
for instance, we may start and stop a running median of 5 with shorter running
medians

z; = median{y,}l =y,
z, = medianly,,y, y;

Zr =1 = med‘m(yn =2 Yn=1+In }
z, = medianly,} =y,

In addition to such a simple sort of graceful degradation, we may well need some
form of further fixup, one that operates close to the ends, such as "the end value
rule” (see EDA, Tukey 1977, Chapter 7). (We may be able to use preliminary

extrapolation as a route to graceful degradation, but I know of no examples.)

When we want to be careful, we replace

1 =, time-origin-shift-invariant

W =,, time-origin-shift invariant EXCEPT near the ends of
the input or output, where the smoother, or more general box,

is modified in a planned way.
Superposition, homothety or polynomiality can still be required for inputs of fixed

length.
Accordingly, ideal IS-boxes need to be replaced by real WS-boxes, ideal IH-boxes
by real WH-boxes, and ideal IP-boxes by real WP-boxes. And ideal ISS-boxes become

real WSS-boxes.

This sort of care in labeling represents a care in thought that is always

appropriate, and most of ten necessary.

sssess 4. Angularfm“encie' L AR R B B J

If we have equally-spaced data {y, }, as we have just seen the range of ¢ will

always be finite - - and this finiteness will usually matter. This is at least as true in
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}:" connection with analysis into sinusoids and cosinusoids like

b 085 C coslwt + ¢)

:Z:?:;:: as any careful discussion of spectrum analysis shows us. As a result (angular)
B

-: : frequency analysis is unlikely to be really helpful in studying the smoothing of
oy short inputs.

KRN

e With this caution, we shall turn to how such frequency analysis can illuminate
LY

-

N the smoothing of "long" inputs, inputs where we are not concerned with behavior
Iy near the ends of either input or output.

R

[ .

! ; ::} ® transfer functions *

L~

™ It

¥ =C coswt + ¢)

y for some C, w, and ¢, and if {y, ] were to be the input to some IS-box, then the output
N has to be of the form

\ .'p')'x

s

) s.,,:

e z, =D coslwt + ¢)

)

g:’ for the same w. In more specific words, all an 1S-box can do to a single cosinusoid is
L

i

1 :'_.‘_-:. ® to change its size by a factor D/C, AND

AN @ to change its phase by addition of y—¢, WHERE

:;::Z:' ® these changes do NOT depend upon C or ¢.

o

e (For proofs for various cases, see Tukey 1984, pp. $07 to 509.)
Y 25_\ It is convenient to combine these changes into a complex number L (w), where
\ by

SO |

N L(w) =(D/ Cle'®®

SRS

) where D/C and y—¢ are, of course, functions of w. It is usual to call L (w) the

::' N trans fer function of the IS-box.
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If we have a finite sum
z Ca co(w,, t+¥, )
A
our 1S-box would give as output
z D, “‘0‘2 + *‘)
e
something we can calculate from the representation of the input and the values of
L (w) at the w,. Since we can represent any finite stretch of input as such a sum of
cosinusoids we can find any finite stretch of output given L (w) and a finite stretch of
input.
In reality, of course, the best we can ask for is a WS-box, but - - except near the

ends of input and output - - its behavior will be completely described by the

corresponding transfer function.

There may be advantages, in studying the behavior of specific WS-boxes, to
supplement the transfer function of the corresponding IS-box by some description of
near-the-end behavior, but no systematic way of doing this has attracted the

writer’s attention.

In more illuminating words, transfer functions completely define 1S-boxes
because an IS-box does NOT ENTANGLE frequencies - - which means that each

frequency in the output comes entirely from the same frequency in the input - -

“while the same is truc of WS-boxes, except near the ends of the input and output.

% blurred transfer function *

The smoothers we discuss here are not likely to be either IS-boxes or WS-boxes,
although they may resembie them in some ways. As a consequence, they do entangle
frequencies to a degree, and their behavior is more complicated. To move on to the

next approximation, let us suppose that

y,~=Ccdmt +¢)+Yj




-23-
and that we have fixed upon a procedure, given output {z; | and frequency w, to write
2, =D codwt +¢')+ Z

where the output corresponding to {y; } - - the same input minus the cosinusoid —

takes the form

' % = . ” L]

* i\\ D" codwt +¢7) + Z,
A
. Thus, adding “C cos (wz + ¢)" to the input has added to the output an amount, if
i we write
25
2 )

e D'

'.' )

W to mean amplitude D’ at phase ¥,

& -
AeH

\d
}'t at frequency w as well as

oy
. ‘ ‘ Zin — z..}
B

N which we think of as being at other frequencies. Accordingly

X

=N~ . )

e _ D'e't — D" e

v L(w) = o
\ NR is the apparent transfer function, which now depends on the {y; }.
i x ..

5' -.
:ﬁ We no longer have a single valued transfer function. Rather we have a blurred
YR
AN ?

i one. If we wished to insert a probability distribution for the "noise” {Y,} we could
iy

¥ :i have a probability distribution for L(w) - - probably most accessible by simulation -
Al

:.:'E - and would naturally tend to consider the average and variance of its values at each
" w.
"2y
:§ Little bhas yet been done to introduce this degree of realism.
e
:.':. X The importance of such ideas today is mainly to ensure that we do not think of
Ve 2 any particular non-linear smoother as having an exact transfer function.
¥
;ié?. * transport functions *
WS
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An 1Q-box - - 8 homogeneous quadratic box - - has the following frequency

behavior

w IN = 02w OUT
@y W IN = 0, 2, 205 w) + Wy wy—w; OUT

An ISS-box - - a bilinear two-input box - - has this frequency bebhavior
w, IN;, wy; IN; = wtwy 0~w; OUT

An IP-box, say inhomogenous of degree 3, with “w,, w, w, IN, that is, with

input

¥, =C colwyt + @)+ Crcofwyt + @) + Cycollwy + ¢y)

has an output that may, and is likely to, involve the following frequencies

0

W), Wy Wy

2wy, 2wy, 2wy

Wty Wi—W, W+ W)Wy Wt Wy Wr—wy
3"’!- 3“’3 3‘”3

W, tw, G, j,any two of 1,2, 3)
+(w; 2wt wy)

Once we leave the IS-box, IP boxes can be expected to transport input at one

frequency (or more frequencies) into output at other frequencies.
What about IH-boxes? There seems
@ to be no simple argument as to what sort of transfer ought to take place,

@ adequate empirical evidence that input at a single frequency is transported

mainly to that frequency and its barmonics

@ inadequate insight into what happens when pair or triples of frequencies - -

or more complicated sequences - - serve as arguments.

We can usefully start to define a transport function M (w — «') by input

Yy =C MM +¢)
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0
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§
1
L)
)

W

and output

z; =D cos(wt + )+ Z;
where Z; is intended to be “free of frequency w”. It is then natural to try to put

D iS¢
c*

and to have to face the fact that, in general, the right-hand side will depend upon ¢.

M(w -'."") =

(The expression in the exponent may make more sense when we realize a time-origin

shift of & has these consequences

= ¢+oah
¥y ¥ +wh
o' o ,
-64 - ;qﬁ + oh
o o’
V-sb= -
showing this expression as the simplest one revealing time-origin-shift invariance.
At the very least then, we have to try to understand
M( w — ') as a function of ¢
- - as something whose image is & loop, small or large - - especially for
o' = @, 2w, 3w, . . Transport functions will not be easy to understand, and only a

beginning on this understanding has been made (see Velleman 1975.)

* blurred transport functions *

All the immediately above was for pure single-cosinusoid inputs. If we are to
understand smoother performance for real inputs, it is probable that we will have

to go to blurred transport functions.

® jintermodulation functions *

When we study those human-built analog-signal boxes that come closest to IS
behavior - - hifi amplifiers - - we do not study their transport functions - - though

for all we know it might be important to do so. Rather we apply

. A
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y =C coslwyt + ¢) + Cy collwy + @) i
of ten with widely different w, and w, and look at frequencies w; - w; and w; + w, - -
looking for *intermodulation®. This has served us well in studying amplificrs, we do

not know whether or not it will serve us well studying smoothers.

* some dangers *
‘When one has an input that is likely to include occasional exotic values under
circumstances where (linear) filtering would have been appropriate if there were no

exotic values, we can think about at least three alternative approaches:

® construct a non-linear filter in a rather direct way, and apply it to the input

© use a robust cleaning procedure to remove the exotic values, and then apply a

linear filter,

@ repeat cleaning and filtering either in order or in some combined way.

The first of these is of ten dangerously attractive to the beginner. If one dares
to forget the transport and intemodulatioﬁ behaviors of most non-linear smoothers
- - or of more general non-linear filters - - the idea of combining, in a single process,
the stripping away of the possible effects of exotic values with the desired filtering
seems attractive. But doing it is far from easy.

The special case of monochromatic robust smoothing - - of low-pass filtering
where the input is a single sinusoid plus noise (possibly stretch-tailed) was fairly
successfully handled by Velleman (1975), but we do not even know how his selected

smoothers would perform for a combination of two cosinusoids plus noise.

* a warning example *

Let us look ata fairly simple example. Let our non-linear smoother be running

medians of §

z, = median {y; -2 Yi=1» Y10 Y410 Ye 42}

A
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.

and suppose our input is

y, =100sin 2¥% 4 D cos 2Tt

3 33333 T nase

where both D and the size of the noise are small.

The values of 100 sin -2—15'—‘ are 0, 95.11, 58.78, -58.78, -95.11, 0, 95.11, 58.78,

-58.78, . . . repeating with period 5. So long as the remainder of y(z ) is not too large,
ny

|
+ noise :<18

2wt
|
|D %5593

the median of any five adjacent y's is that y for which 100 sin 2 7w t/5 = 0, that is,

for which t =0 (mod 5).

If ¢ starts at zero, and there is no noise,

20=2=2=Dcs0=D
10w
22222
20w
22222
30m
22222
407
2185219522052 9=2n =D cosm =D cos18mr =D cos 0

- - - = m = =
ZN=224=Z 252202 Dc(:sz_2222 D cos225 w = D cos Sw

22872 20=23=231=xp =D m%}- =D cos2Ir=Dcos ™

Z23=2,524=2¢=29=D cos =D cos 450w = D cos 0.5 7w

=D cos900r =D cosm

24=2¢=210=21=213= D cos

=D cos135S0nr=DcosiSw

21352145215=2 =29 = D cos

etc.

Thus 2, is periodic with period 20, and has a simple wave form. Accordingly a

substantial amount of
i

appears in {z,} - - in fact, this term will be by far the most sizable frequency

present.
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As well as annihilating the

“272

term, the running medians of S have transported energy from the

2wt

333333

term, whose frequency of oscillation is 1/2.2222 = .45 cycles/point, to a

2wt
S35

term, whose frequency of oscillation is 1720 = .05 cyclés/point. Beware of transport

and intermodulation.

* Mallows’ linear closest *

It is natural to try to study non-linear smoothers by asking which linear
smoothers - - which IS-boxes, which transfer functions - - approximate them most
closely. If smoothers behaved like IS-boxes with little IQ-boxes in parallel, such an
approach might prove very powerful. For smoothers that behave like IH-boxes,
however, we must be prepred to be grateful for whatever small gains any such
approach can yield. These results have already proved useful in correcting for
gentle variations in L (w) caused by the use of a non-linear smoother

(Schwartzschild, 1979).

And it may be that we can come to understand the essentials of the non-linear

behavior of certain boxes, perhaps even certain smoothers, by studying the modified !
boxes whose fina] output has been corrected for the linear consequences of their use
by applying the inverse of Mallows’s closest linear approximation to the initial

output.

Colin Mallows (1980) has studied this question. His results are interesting, but
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of limited help. He approximates

[non-linear smooth of] (Gaussian signal PLUS white noise)

(where * white noise™ means independence from one time point to another) by

[linear smooth of ] (same Gaussian signal)

(note the absence of action by the linear smooth on the noise?)

and finds a unique best fitting linear smooth. However, this best-fitting linear
smooth depends on both which Gaussian signal process and which white noise we are
presumed to be concerned with. Thus trying to “omit the non-linearities® gives
different results for different inputs (to an extent that seems not to have been

studied). The “linear closest” is not at all like a transfer function.

These results are limited to the case where signal PLUS noise is white. Again
little seems to have been done to study dependence on shape - - and relative sise - - of
the noise distribution.

Little here scems likely to be easy; probably nothing can be wsed immediately
to provide major increases in our insight. |

L A E R R ¥ s‘simpkmh S$88888

Frequency analysis of smoother behavior may eventually be quite powerful,
but its use involves complexities and dificultics. Thus, there is an important place
for simpler methods, even when these give quite limited information. Of these, the
use of benchmarks seems likely to be particularly helpful. We discuss simple,
individual-input benchmarks in this section, and more complex, mainly probabilistic
benchmarks in the next.

* kinds of simple benchmarks *

The simplest inputs we might use for benchmarks include:
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i

=1 ® breaks - - inputs in which one constant value suddenly changes to another
:.:‘q' ® straight lines - - inputs that decrease or increase linearly

i

3 7 e polynomials (in the time index)

® box cars and towers - - inputs that are zero except for a more or less short

3 - stretch where they take a common non-zero value
i
)
5 @ binomial bumps - - inputs that are zero except for a more or less short stretch

where their values are those of the binomial coeflicients (':) for chosen n

W]
A ® single-color sinusoids - - inputs of the form C colwt + ¢)
o |
)
N
;}, ) o combinations of the above.
Sis We will now say a few words about each of these in turn.
. {:,
'-1.')-
o * breaks °*
. The desired response of a non-linear smoother to a break is not always the
R
b ::: same. Sometimes, especially in image processing, it is of overwhelming importance
IR
',';: to preserve the breaks. At other times, especially when what underlies the data is
. reasonably sure to be smooth, it can be of great importance to “smooth over" the
:E’,?E breaks - - and thus keep them from distracting the viewer.
*
)
“. Response to breaks is a tool for sorting smoothers appropriate for different uses,
,§ ) rather than a uniformly applicable criterion of quality.
IR
NN
W * straight lines *
“' A
o The input
'3'{:3
E:': y, = A + Bt
¢
o~ is just about as smooth as an input can be. Thus there is no need for a smoother to
% change such input. Ordinarily, we feel strongly that our smoothers should preserve
iy
;g‘ straight lines, turning out an output identical with the input.
Py ’
R
s
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* polynomials *

This desire for preservation extends to polynomial of appropriate degree,
almost always to quadratics and usually to cubics, sometimes beyond. Polynomials
are of interest

® because they are simple to describe and manipulate, AND

® because they imitate, sometimes closely and sometimes not, important aspects

of the behavior of either real inputs or of what after being contaminated with

noise became the real input.
Thus quadratics simulate individual smmooth maxima and smooth minima, sometimes
quite well. And cubics can simulate the connection of a smooth maximum and a

smooth minimum.

We of ten would like to have our smoothers preserve polynomials of degree €

some k, either exactly (an ideal) or approximately (sometimes a reality).

* box cars and towers ®

Lewis Carroll may have originated "what I tell you three times is true” (a later
science-fiction story describes the effect of including this maxim in a large
information system). One of the main purposes of non-linear smoothers is often not
to believe what happens only once, in other words to pay very little attention to a

single wild value.

Some number of adjacent similar values will need to be taken seriously. The
proper cutoff - - between what is surely not taken seriously and what will often
need to be taken seriously - - will vary from application to application.

A smoother like running medians of 3, which almost neglects a single exbtic

value, but preserves two equal adjacent exotic values, acts as if “what I tell you
twice is true!

| c
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A smoother like running medians of S acts as if “what I tell you three times is

true” And so on.

Box cars and towers also serve to classif y smoothers into groups made up of

candidates for different classes of applications.

b bim-'»mial bumps *

Besides short constants - - box cars and towers - - it is useful to understand how
specific smoothers respond to specific short, but more or less smooth inputs. While
broken-line inputs might seem simplest, they do not seem to imitate important
aspects of very common inputs. As a result, they do not appear to be a useful
benchmark.

The binomial coefficients, which give a tower for n=1, give smoother bumps for

larger n (and even approximate a Gaussian density for very large n). The simplest

cases ares
000 O O 01100 0 (n=1)
000 O 0 12100 0 (n=2)
000 0 1 33100 0 (n=3)
0 00 1 4 6 4100 0 (n=4)
0 01 5 10 105100 0 (n=8)
016 15 20 1S 6 1 0 0 O (n=6)
(Here the zeroes are part of the input, and continue, in both directions, as far as

needed.)

Unless “what I tell you twice is true!” applies we would like our smoother to
neglect a binomial bump for n=1. On the other hand, we would like to preserve

binomial bumps for large n, at least approximately.

The smoothers “3R" and "3R twice” when applied to the binomial bump for

n=4, both yield, as outputs,
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and hence as roughs (input MINUS output)
0000O02000U0O0
while “3RH" and "3RH twice" yield,
00 25 1 325 4 3251 .25 0 O

and

0 0 .25 118 4 4 4 1.18 25 0 O

respectively, as smooths.

Rather than criteria to be rigidly met, responses to binomial bumps seem to be
behavior to be understood, behavior whose understanding often increases our
understanding of the overall behavior of the smoother concerned. Again

understanding of this behavior may let us sort out smoothers in yet another way.

¢ single-color sinusoids *

When we want to see behavior on something smooth and moderately simple,
but not specifically localized (like a binomial bump), the most natural class of

candidates seems to be the single-color sinusoids

¥ = coslwt + ¢)
where we of ten need to look at a fair number of values of w , starting with rather
smooth instances, which arise for small w.

Since the input is periodic, and the smoother is, probably, W, we are likely to
have periodic output (as always, away from the ends of the input and output). Thus
we are not likely to need to look at more than 1.5 or 2.0 cycles of output. (Looking

at only 1.0 cycles can mislead us.)

With non-linear smoothers, the value of ¢ can matter, although for IH- or WH-

smoothers a change of ¢ by 7, which takes y, into —y, offers no new information.
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Thus we may want to look at 2, 3, 4 or possibly more, values of ¢ - - which may
well be limited to [0, 7] - - for a given @ - - in the hope that the corresponding

behaviors will not be too different, but not with certainty that this will happen.

Careful thought about how to display the answers may be worthwhile.
Generally - - since we are describing smoothers - - we anticipate (near) preservation

for small @ and (near) rejection for large » (in our case of integer t, "large” means
o's approaching ).

* combinations of the above *

There may well be much to learn from combinations of benchmarks of the

types just briefly discussed. However, we haven’t really started to do this yet.

* closing comment *
He who wishes to understand a specific smoother, or wants to learn to think

aboutmooﬂwn.vﬂldowelltocalcnhtzwlnthi:moother--orafewaelécﬁed

smoothers - - do to a variety of simple benchmarks.

sss8ss 6. Distribution-based benchmarks ssssss

Besides the simple benchmarks, there is a place - - of ten in combination with
simple benchmarks - - for benchmarks which simulate irregular variation, “noise® if
you will. Most of these are stochastic - - are thought of as consisting of a population
of possibilities and dealt with in terms of a sample - - of some number of
realizations drawn at random from the corresponding population.

% Gaussian noises, some white *

At one extreme are the "Gaussian noises” where y,, y» -, y, have s joint
Gaussgian distribution, most of ten a distribution as unaffected by origin-shift as
possible, 20 that (y,, y3 — y,—;) has the same distribution as (y, - y, -1, y» ) (This

implies that the covariance of y; with y; only depends upon !i-j1.)
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When used in combination with (after superposition on) a simple benchmark,
the most frequent case is that of 8 white Gaussian noise, where all the y; are
independent of one another. this is often a reasonable facsimile of a "nice”

background noise.

® gtretch-tailed noises - - mostly white *

Background noise need not be nice; in fact a main reason for the existence of
non-linear smoothers is the likelihood of exotic values. Two sorts of stretch-tailed
noises seem most useful for challenging smoother behavior:

@ contaminated Gaunssian noise where a% of a broad Gaussian distribution is

mixed with (100-a)% of a narrow Gaussian with the same center, AND

® slash noise, which can be generated by dividing a zero-center Gaussian deviate

by an independent rectangular deviate (uniformly distributed om [0, A] for

some A > 0).

Again the “white” case, where y; is independent of y, for i * j, has been used
almost exclusively.

These “noises” are also intended to imitate an irregular background. Good
smoothers will reduce their effects on the output almost as far as possible.

Good performance against both Gaussian and stretch-tailed noise is almost a sine
qua non for good robust smoothers.

There are important applications where noises are "bursty” - - where exotic

values tend to come in groups of 2, or 3, or more; I have no experience upon which to

comment.

* combinations among simple benchmarks *

Here are several opportunities for the future. Velleman’s work (1975) focussed

on a single cosinusoid plus white noise of different kinds.
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I PART 2. SOME CLASSES OF SMOOTHERS
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. 3 QX
fose
P
o
':-:‘f
e s$sssss 7. Median-based components 252383
- This section introduces, rather briefly, the basic median-based components, and
1) []
\::: a few modifications. Recall that we met the simplest median-based components in
a7 section 2, under *tenting®. |
s ".‘
a &
Yoo * kinds of median *
"o
\'. When we have an odd number of values, say the five values 9, 4, 1, 2, 5, their
median is the middle value after sorting in order —(1, 2, 4, 5, 9) — and hence 4 in
- v ::j this example.
o
:-;:- WYhen we have an even number of values, say 8, 3, 6, 7, there are rwo middle
.f:"
L values, after sorting in order, in this example 6 and 7. We call their mean the
-:;:_i median, the lower one the lomedian and the higher one the himedian. Thus, for
E :1'.':':: instance
.F.:.-
o med!8.367) = 1(6) + 1(7) = 65
o lom{8,36,7) = 6
LN him(8,36,7) = 7
._-. \l
~ We extend these rules to negative values directly, so that, for instance
Eage
”,
e med|{7,~1,-2,-4) = —1.5
N4
e lom{7,~1,-2,—4} = -2
23 him{7,~1,-2,4} = -1
:: :'.', thus ensuring that for any a and ¢ 20, and any k 22
o3

; med{a+cx;, a+cxy *°° ,a+cx,) = at+cmedix;xy ¢, Xz}
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lom{a+cx;, a+€xy - ,atex,} = atclomix,xy -, x,)
him{aﬂ:x,. a+cxy °°° '.+cxl} 8.+c0him{xl’xz ese 'x.}

(For negative c, the first relation continues while the other two require “lom” on one

side and "him" on the other.)
For odd k, the “him" and "lom" of any k values are, of course, the same as their
“med"”.
* warning about *2°, "4, .. *

Rather clearly, if we were to plot

1
-;- Y.+ 'f’nl
we ought to plot itatt + %-. All running medians (or running means, etc.) of even

lengths have this property. It is almost always desirable, therefore, to use such com-
ponents in pairs, one after the other (still other component smoothers can be put in
between, of course) so that our indices move first from integers to half integers, and

then back to integers.

* gelectors and semiselectors *

Colin Mallows has introduced the term “selector” for a function of k variables
whose value is always one of its arguments. Medians for odd k, and all lomedians
and himedians, are selectors.

It may prove convenient to define a semiselector as a function of k variables
whose value is always EITHER

® one of its arguments OR

® the average of two of its arguments
Clearly all medians are semiselectors.

If we take a selector, and substitute a selector for one or more of its arguments

- - where, if we substitute two or more, we may substitute either the same selector

T Y e et T e :._ .o v d. ’\-'_.;\:;..:_.:.‘.- *:;\-'-- ..J‘"-‘.\(_ ~. S -'\-‘_ -~
A . A o e R P NP T e St
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o '

! or different selectors, but generally with different arguments - - the result is easily
)

seen to be a selector. [A corresponding statement about semiselectors is false.]
v * to the death *
Those smoothing components that are selectors are usually also, in a sense

N which it does not seem helpful to make too precise here, both smoothing and shrink-
'} -

3 o ing, in the weak senses that their output is both not rougher and not more spread out
?

oyt

" than their inputs. As selectors, since n y's have at most n different values, their
s repeated use can produce at most n® different sequences. So repetition can only lead
i '-ﬁ: to eventual constancy or cycling. And cycling will ordinarily be incompatible with
gl *smoothing and shrinking".

| Ny

Y,
. ’ Thus, at least for components or subassemblies that are selectors, it makes sense
A5
::',.. jﬂ\; to define "R" as expandable to "repeated to death® or "repeated to no further change®
B as an instruction to repeat the indicated component or subassembly until no further
,E:::.: changes occur. Such a definition is only useful when the needed number of repeti-
N

::-::: tions is small — or possibly moderate. (The frequently observed tendency of con-

; tinuing change to be concentrated in a few segments, rather than throughout the
.-;-}‘ sequence helps 1o make a moderate number of repetitions bearable in hand calcula-
:_"3 tion, since we may only need to recompute for a few short stretches.)

iy
X

The use of R allows simple components to generate much more potent subassem-

R
b blies. Thus "3" is helpful, though its output has no easily specifiable properties, but
T “3R" has a simple property - - it leaves alone any output that moves monotonically
o up — or down — between flats where two or more adjacent values are equal.

‘Y S

O

Yl * roots *

e

:*‘M Whether or not we do "R", we need to have some intezest in the classes of
;: sequences left unaffected by a particular smoother. These have been rather felici-
E‘E::' tously called “roots” of the smoother; for some results see Nodes and Gallagher
2

R’

b
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o (1982) and Huang (1981).

1 \'ﬂl

40%g
i" : * the sh( ) components *
LS
e We have already noticed the importance of a variety of attacks on erosion —
s
h and the limited gain to be had by relying on reroughing (esp. twicing) slone. The
i*‘-';‘ sequence of components we are about to describe were called into existence by a
o
1" desire to reduce erosion in the most erosive steps.

":'
3 ; ] z ]

SN

R . v
:Cj}z With a, b, ¢, d, ¢ five successive values in our sequence, 4 is defined as follows
=2 (the mark above the digit is intended to be a *hash mark® as in the Czech languagek
$1'.:.:
Ko v med(b d), if (a—b) (d—e) <O
o 4 givea toreplace ¢, | ogia, b e), else
S8
e In words, if a,b go up and d, ¢ down or vice versa, 50 that there seems to be a peak, or
:‘f{:; a valley, between b and 4, we take a median of only the two values b and d, thus
.": going less far down the mountain (or up the valley walls) (than if we had used
Ll med{a, b, d, e]. In such situations med(a, b, d, ¢} may resemble
o
s 1 medit d) + 1 media.cl
Al
".ﬁ which, for a centered quadratic, would be S times as far down (below the peak) as
[0

- 1

-.!--‘ M{hd} .
:::\ 2
VR v
.3 Following, rather crudly, the exampie of the Csech “souslashky na hacky" (con-
‘Q ‘

N e v Vv v v
e sonants with hash marks) like ¢, 8, and r, we choost to pronounce 4 as “foursh’,
.'I.~
::::‘?, making similar additions of “-sh® to other numerals.
XN
e .

o * 5and higher *
R
~.3: In the same spirit, though less violently, if a, b, ¢, d, ¢ are five successive values,
b
W
.
1,::

"
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we define five-sh by

v _ med(b, ¢, d) when(a—bXd—e) <0
S atc= lned(a, b, de) else

We are now ready to give a recurrent definition, where n=m+2 withm >3, by

v m if the product of the end differences is <0
D = I med{n consecutive values of y}, else

Thus for n odd, an apparently peak value will be replaced by the median of exactly

3 adjacent values (for n odd) or of the two adjacent values (for n even).
v
] 3s
A component somewhat related to the end-value rule and splitting (see later in

v
this section) which is only infrequently different from 3 for noisy inputs is 3,

defined to produce

3¥i-1~Yi-2

Yi-» —F Yil med

med | med 3Yi+2-7i+1’yi]

Yiers —

Yi-1 Yio Yiﬂ} med

as its output. 3R does not flatten peaks and valleys quite as much as 3R.

Whether we should also consider

med

3¥i-s—¥i-2 3¥ie1—Yie2
Yi-1 3 » Ti 3 » Yi+d

as a -sh-like smoother is unclear.
v
4 s t 4

v
A modification of S, see later in this section, when 3R replaces 3R in the fixup

phase following splitting, ending, and rejoining.

w
¢ 5 8

»
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i::' An untried analog of 3 that seems to deserve attention is °S° whose value at t is
;2‘," median {2y, ;~Yi-2 Ye-1r ¥o Fiow 2FeerTee2
o
?." which is one of the simple smooths that preserves corners formed when all the
."' }
" relevant points lie along two straight lines meeting at a peak (or valley).
N
»-'_:.'*_: ¢ discussion *
s v
' The use of -sh smoothing components (smoothing components, perhaps) thus
‘. allows us to have the greater smoothing power of longer medians away from clear
" '& .
s peaks or valleys without accepting the degree of erosive action on peaks or valleys
;' that the longer smoothers wounld ordinarily produce.
K 6-
‘ﬁ:-f, We need more comparative experience to know how widely we want to use
IS
’ v v
= Clearly all -sh components (except 3 and 5) are selectors (when an odd number
T+
}: of values are combined) or semiselectors (when an even number are combined).
)-‘.-'
-C
' A further step in this direction, about whose performance we know even less,
e v v
B fits a straight line to the 4, 5, or more points in question, and applies 4, S, etc. to the
W)
g : residuals. (The smooth part of this -sh-ing has then to be combined with the contri-
W
e bution from the straight line.) Whether this step would be for good or bad is hard to
j:i::: ny.
I
o
h - * monotonicity *
. A simple way to express the fact that a sequence without adjacent ties is
o (weakly) monotone (globally or over a section) is to require
s
w. ¥: = med{yi—y, Yo Feesr! ®
{ o
7 which ensures that y,_,—y, and y,,,—Y, are not of the same sign, which is equivalent
o
"‘a::‘q

:h () DU > 'wf\'..*‘»"‘-(- \-..-".}\‘.\,--. a” ,.‘..- - ., ',.. St 1S < o (P n R N AN A PN
AN A ANV R A NS RIS IR et f"i\’\“‘h ", !‘ NS M“ !‘Jﬁ'! <



W
b3 -a2-

Q)

‘% ‘ to ensuring that y,—y,-, and ¥,,,—Y, are weakly of the same sign.

v More generally, a sequence satisf ying (*) consists of monotone sections, joined
:C by stretches of two or more equal values. (As we noticed above, this is clearly a
T
'; v consequence of "3IR" since (*) says that another °3" will have no effect.)

R N -
‘8 s ]

¥
W
iG> If we really want to require (weak) monotonicity, we can ask for (*) for the
)

condensed sequence {z,} in which adjacent ties in {y,} are replaced by a single value.

‘.:'.; (Thus t in {2,} ordinarily runs through fewer values than t in {y,].) We will later
SO '
‘(: have some use for condensation as a smoothing component, so we plan to identify it
A
. by the letter C.
o

- * head banging *

v,

-y Another way to look at medians of 3 is to suppose that we have formed,
’ somehow, a low sequence {L,} and a high sequence {H,}, between whose pairs of
Ly
o values we want the smooth to fall. An easy way to formalize this is to take
R

” mediani{L, y, H,

)

f-:: as the output of a component. This approach generalizes to more-dimensional t (to

Y]

:{v_ smoothing in the plane, etc.) (cp. Tukey 1979, Tukey and Tukey 1981), more readily
P than other simple sequence (one-dimensional-t) interpretations.
"y
¢
52 * the H component *
If "2 denotes "running means of 2° or “running medians of 2", which are
;'E identical, then H = 22 is hanning, definable as
>y 1. .1 .1
b 7"-1 'fy‘ Tyhﬂ
5:5: or as
0“.
R
' 11 1 1|1 1
:;:. 3 [57;—1 + 3T + 3 ‘-{Yt + 3V

. L J - L] » h - b - ’ ” -~ - - ’ - - . ’
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1 1
3 "z"l-l + i’wl

or in another form to be mentioned in section 9. Except for its linearity, which

1
+ ‘i"t

may be either a pro or a con, its not being even a semiselector, and the failure of H,

HH, HHH, ... to stop at any reasonable number of iterations, the formal properties
of H are of little help.

In the presence of exotic values, it is a dangerous component to use early in a
smoother, particularly because of tenting. Once more robust components have been
applied, however, it is often a very useful polishing tool; especially when "local

smoothness” is morc valued than the "precise values of the smoothed sequence”.
¢ end valuesand S *
The naive approach to the ends of the input sequence makes use of two forms

of a simple idea:

a) shorten the smooth (as in components) when there are only enough values
to allow a shorter component (thus at t=2, where only y,, ¥» ¥; are available
symmetrically around t=2, "5" automatically becomes "3") AND, at the very

extremes,
b) copying on, where at t+1, we take y, as its own smooth.

Stopping with this last is of ten not good enough. Though we are unclear as to
what would be best, we do fairly well with the "end-value-rule” according to which

the smooth at t=1 (muzatis mutandis at t=n) is

Ey,) = median{32,-22z5 y), 2, .}

where z, is the value of the smooth of {y.} at t.

.wm‘
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3R and its relatives tend to leave many pairs of tied adjacent values, particu-
larly 2-mesas and 2-flats, where the tied values are a Jocal maximum or minimum.
Some of these are quite all right as they stand, others are clearly exotic. One way of
dealing differently with such 2-extremes is splitting. Conceptually we divide the
sequence between the two values in the tied extreme. Then we apply the end-value
rule to the new end of each portion. Now we can reunite the portions, and smooth
lightly - - routinely with “3R", exceptionally as desired.

When we want a smooth smooth, “3R" demands something like °S" for “split-
ting® to follow. Repeating S for the second time is of ten desirable. (3RSS is a useful
work horse.) Indefinite repetition of S can, however, be Memg since *zipper-

like® action can propagate changes, of ten unwanted, to indefinite distances.

sssssse 8. Median-based smoothers — assembling components s$sssss

To make smoothers out of these components we need to connect them, of'ten in

moderately complicated arrangements.

®* connectives *

There are only a few simple ways to combine components, particularly

resmoothing and reroughing. Resmoothing appears schematically as

AN
N

AN

A 4

where the divided arrow emits the smooth from its smooth arm and the rough,




4o ‘ .
.
L
N -4S-
\ .
]
o defined by
B,
A
data = smooth PLUS rough
$'. ¥; ESy, + Ry,
N
from its rough arm. Resmoothing is most often devoted by simple juxtapostion - -
“ where a separator seems needed we will use a colom.
b
3 _‘_: Reroughing is often denoted by an interposed comma, and appears schemati-
,'.:: cally as '
L N\ —® —>
:“ " .
&
o
R/
o
s
¢ -\f‘, g
L %
o
e where the smooth of the initial rough is “added back” to the initial smooth. If the
k.
. two (or more) smoothers in a reroughing configuration are the same, we may, and
.E: of'ten do, refer to twicing (thricing, ..\
"
o Indefinite repetition - - repetition “to death® - - is only feasible if the process
, for any finite sequence comes to a halt after a finite number of steps. Fortunately,
159
2‘5 as noted above, this does happen for odd-length median smoothings, so that *3R" - -
i
Ij meaning °3 repested 10 death” - - is 8 wseful finite process for any fnite sequence.
Lk -
_.- ¢ stranding ¢
a_{-'
:,’.j An approach that has been repeatedly suggested as a way to smooth somewhat
-7
, more vigorously — in a sense down to lower angular frequencies — but seems not to
-
T have been tried out extensively is stranding (called “slicing® by Gebski and McNeil
a_:
o 1984). Here the original sequence is first divided into k subsequences, each of which
::. A
72
) 3y
3 .
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contains every kth value from the original sequence. Each of there subsequences is
smoothed separately, the results are interleaved to the places from which they came,

and further smoothing applied to bring the strands to a common smoothness.

We have subscripted our y's with integers, as if the values came at equally

spaced points. What if the spacings are not equal?

v Vv

For 3, S, .., and S, 7, . which only use the ordering of the locations, there seems
to be no theoretical reason at all to make any allowance for unequal spacing.

Experience seems to confirm this.

v Vv
For 2, 4, . and 4, 6, .., including H, there would seem to be some theoretical rea-

son to do such things as replacing H by H*, whose value at t would be

73'—7 Y- + —y. 7(8—_)'""

1] € + 8 +
35 +€yt—6 mYnn

in which the parenthesis can be easily recognized as the linear interpolate from y,;

which is identical to

1
7’:

and y,.. toward t = t. Experience seems s0 far not to have shown such complications

to be worthwhile.

For high-performance smoothers (see Section 10) involving - - usually section-
ally - - line- or polynomial- fitting it is probably worthwhile to allow for spacing,
mainly because of (a) mean-line (i.c. least squares) fitting in the body of the smooth

and (b) unsymmetric windows near the ends.

For median-based smoothers, the evidence to date favors “don’t bother®, as does

the simplicity of treating all sequences, however irregularly spaced, as if they were
equi-spaced. So we shall say no more about unequal spacing here.

.....
P T TR S S VR S S e
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* condensation for global monotonicity *

There are many sequences for which a globally monotone smooth would be

UNacceptable. There are others, however, where we might like to reach a monotone

result.

The alternating use of 3R - - which enforces monotone sections, joined by flats
of length at least 2 - - and C - - which, as we saw, reduces each flat to a single point,
thus shortening the length of the sequence - - is a selector. Thus it can be carried on

“to death” and the final result will in fact be monotone.
One easy way to keep the notation straight in such a process is to introduce

Yaw » = the common valueof ¥, *** ,¥e *** . T

Such interval subscripts make going back, say from 3R : C: 3R : C: 3R, which will
ordinarily be shorter than the original sequence, to a smoothed sequence defined for

each of the original t's quite easy.

* historical account *

It is moderately easy, and moderately accurate, to sort out many resistant
smoothers into discrete generations. A reasonable sketch — leaving aside questions

of fixups at ends, etc. — foliows
Generation 1. 53H, 35H, and S3QH, both once and twice (Tukey 1971)
Generation 2. 3R, 3RSS, and 3RSSH, both once and twice (Tukey 1977)

Generation 3. High-performance smoothers for long series — based on w-

estimates and cosine-arch running linear combinations. (Velleman 1975)
Generation 4. 4323, twice or thrice (Velleman 1975)

Generation 5. 43RSS23RSS (and 43RSS23RSSH) once or twice (Tukey 1974/1985)

A PRV R g PN e A R A PO A S
e R R Y e e s A AN v
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': vYVvVYV V¥V vv vYVvVvy v \ A4
¢ Generation 6. 43SS23R SS or 43SS23R SSH, once or twice (Tukey 1974/1985)
< " v vv v v
) Generation 7. 3RSS or 3RSR, once or twice (Tukey 1974/1985)
. Generation 8. High-performance smoothers using sectionally-fitted lines (See
D'
t' Section 11.)
:: Generation 9. Forced monotone smoothers, like 3RC3IRC 3RC3RC...3RC =
'
:: (3RCR
)
W
K Generation 10. Swoosh-swoosh smoothers (See Section 9)
y Generation 11. Detrivializing smoothers (see Section 10).
Generation 12. Smoothers within bounds (see Section 11).
by
e As of the end of 1975, my recommendations for a reasonable bouquet-or menu -
of smoothers from generations 1 to 7 looked like this
: .
ff Light smoothing (tell twice is truek 3R or 3R, once or twice.
N v vv
N Moderate smoothing, preserving breaks: 3RSS or 3RSS once or twice.
.
;‘ v vv
~ A little smoather, reduced breaks: 3RSSH or 3RSSH, once or twice.
Still smoother with breaks gone: first 43RSS23SS, once or twice, then 3 — OR first
B :: v vV Vv L A4
. 43RSS23R SS, once or twice, then 3.
: For long series, to reduce harmonic distortion. See Velleman 1975
> Note: For clean residuals, always use a twice (or thrice, etc.) smoother, or
:_ some other sort of reroughing.
My experience with later generations is not extensive enough to urge me to yet pro-
| ‘:: pose an update.
:: sssess
&

9. Swoosh-swoosh smoothers ssssss

4 For some sorts of data, the natural smooth seems to be a sequence of relatively

smooth sections connected by points of change. (An extreme form would be a
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polygonal broken line, where the sections are straight.) To obtain smoothers that
give such outputs, we need to supplement the collection of more familiar median-

based components, perhaps with those we now illustrate.

* S1OCK *

We now introduce one new component, “S-LOCK" by the rule:

(5-LOCK) Any maximal monotone section of length 5 or more, containing at

least 3 distinct values, is "locked”, so that the next component is not allowed to

affect any values in any locked section.

This means that anything long enough to deserve being called a "swoosh® will
not be affected by the next component.

Exhibit 1, based on enrollment figures for Yale University (kindly furnished by
Professor F. J. Anscombe), shows the effect of applying (read from left to right; treat
colons as implying resmoothing)

S-LOCK:3R:5-LOCK:5R:S5LOCK: TR:$LOCK : —
As a result most of the smooth consists of of monotone sections, either up or down.

At most ends, these sections overlap, making a locked peak or locked valley.

In our example there are 7 places where one locked group abuts on another (that

moves in the same direction possibly with one unlocked value between), namely:

1815-16, 1823-24, 1830-31, 1846-48, 1866-67, 1884-85, 1895-96
there might also have been gaps, where one or two years belonged to no Jocked

group. We clearly want to consider adding another step — or other steps — to deal

with such cases.

©* ENDS *

The simplest way to try to deal with the abutting arrows is to introduce

“ENDS" in terms of these components:

AL St T




.';SI‘. - B ( o ‘ . bR LA R M AN A S A A 05 0 0t acl DRATREE abal sl b bl akhraba"y |

J:'h',
A% - 50 -
e
Pl exhibit 1
=, Early steps of swoosh-swoosh smoothing
. the enrollment in Yale University 1796-1975
W (5-LOCKS shown by arrows; unchanged arrows and unchanged values
;::(:: not repeated in later colums; see calculations in exhibit 2 for * = ENDS)
'-:g,?. Year In 3R SR 7R * |Year Im 3R SR TR *
N
Y 1796 115 1840 574 564
e 123 550 )
s 168 537 550
o 195 559 5425
Y 1800 217 542 559 550
el 217 1845 588 584 550
' 242 + 584 550
. 233 522 531 558 |
b 200 222 517 558 !
5% 1805 222 204 531 558 |
"o ' 204 1850 555 : 558 ‘
P 196 558
> 18 _ 605 Iy
o nﬂ 594| 605
oAy 1810 255 » 605y
RN 305 1855 619 605 A |
313 598 - |
o 328 565 578 N
- 350 333 578
_ 1815 352¢ _ 333 641 599
o 298 349 (1860 649 641 617,599
-7 333 349 599
o 349 617
Lo 376 632
1820 412% 644
. 407 412 1865 682
R 481 473 470 709+ ’ 699
o 473 v 470 699 709
Wy 459 4710 ] 473 724
Sy 1825 470 459470 473 736
o 454 470 471311870 755
. 501 474 809
Nt 474 496 485 904
T 496 485 955
WA 1830 502 496 _+ 485 1031
o 469 485 B 496 || 1875 1051+ v
i 435 496 1021 1039
— 53 514 1039 1022
T 514 536 1022
o 1835 S72 570 1003 1022
S S 570 :
e 564 570
o 561 564 57
e 608 574 564
N
s
G
\"« NOTES Unchanged columns not repeated. 7R made no changes on this page.
N,
.:-"3.-:
v,
‘ ._‘. "J"l'.;..-"';..:::‘;.:..‘:-:q | ._')‘._:’:'}s;?-'.\- ,~-'.~- x:._\‘:',.':_ . _ -': .:. _-."\. '.'“t'«‘tf".'_'-""*‘-'.' IR .'.’_.:J\_r‘-{\."», ~ ."'l",'-'.‘; :
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(exhibit 1, continued)

1880

1885

1890

1895

1900

1905

N 1910

1915

1920

1928

3142 3138
3138 314

3433 3450
3450 3433

3229 282
3288 3272
3272 32883272
3310 32712

-.. -
P o {‘-" « ""k'\-
BN ™ Yy o
SOOI IS

";l

LTI W T AGREHAGININS

e’ -".‘- -

5631
$615

5483
5493

S744

>

9214
92319219
9219,9231
9231

JOTES Uschanged colamas act repeated. TR made 50 changs o0 this page ® made o changes aftar 1900
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G already discussed, which replaces adjacent tied values by a single value, leav-

ing locks in place (even if they now involve fewer than § values).
U, which unlocks one value from each abutting lock

by defining “ENDS" as C then U then 3R, all repeated until there are no more abut-
tings or gaps. The details for the example are given in exhibit 2, where temporarily

removed values are shown by ° signs (and are neglected when applying 3R).

* intraswoosh smoothing *

A further step that seems to make good sense is to do some smoothing within the
monotone stretches — the swooshes. Since no median smoothing component not
incorporating averaging has an effect on a monotone stretch, it seems natural to use
some form of running means. The simplest choice is of course H, which we write in
an unfamiliar form as follows (the "+" and “-" subscripts imply an unwritten 1/2%

A¥i4 = Vi1~V

A%y, = AYu—A Y- = Yie1—2¥14 Y11

1 1 1 1
Hy, = —4‘yt+l + iyt + Ty'-l =y, + 7 Az’t

This form
1
Hy, =% + vy AzYt

makes it easy to always calculate the “correction”

1

1 1 1 1
"'—4- A%y, = Ty!—l - 'fy! + -4-yt+l = 7 Iywl"Yt] - IY|-Y|-II

and then apply it or not as is appropriate.

For our present purposes, we apply it at every t that is not a locked peak or
locked valley. Exhibit 3 — shows the calculations for a sample column of 25 years,

and the results for the remainder of the sequence.

When we plot the results we get the three panels (which deserve and receive

different vertical scales!) of exhibit 4. We see that our smoothing has eliminated the
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exhibit 2
The calkulations required to apply ENDS
to the 8 abuttings in exhibit 1
(5L = relevant part of 5-LOCK)

Panel A
(1808-1837)

Inpu C U 3R 5L C U 3R 5L Ow

- - - - -
183J 183
228 228
1810 258 255
305 305
313 313
328 v 328
350 | 50 - 333 333
1815 3524 350 . . 333
298 333 333 349 349
333 . . 349
349 349
376 376
1820 412| 412 } 412
412 ® 412
473 473 470 470
a% " . 470
470) 470 473 473
1825 470 . . 473
470 - . 473
474] 474 l 474
496] 49 485 485
496 . . 485
1830 496¢ " * 485
485]) 485 496 496
485 . . 496
514 514
536 536
1835 664 564
5701 570 570
s10}] - { ] ! s
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1840

1845

1850

1855

Input C
564|
sso|| sso
5 [ ]
5 -
559 | 559
584 | S84
s84 ¢ °
531_ 531
$17°] 517
s31 | 531
555 | 555
558 | S5s8
605%| 605
605 .
605 .
605iv °*
1855
1860
1865
1870

- .
¢

v 3R 5L Ou

1 -

559 3550
531 3555

C U 3R 5L Out

<54 -
exhibit 2 (cont’d)
Panel B
(1840 - 1855)
U 3R 5L C
550
559
584 559 ¢ .
531 531
517 531 .
53 .
555
558
605
JV v *
exhibit 2 (cont’d)
Panel C
(1855 - 1870)
Input
605
598
578
578
599
599
599
617
632
644
682
709_¥ v 699
699 709
724
736
755

598

Tl s

578
599
599
599
617
632

682
699

724
736
755

550
550
550
550
550
550
555
555
555
555
558

605
60S
605
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g ' exhibit 2 (cont'd)
138
.: X Panel D
i s (1880-1905)
$:§ bt € U 3R SL oOu
! 1880 1037 l 1037
L2 1042 1042
i 1092 | 1092 1076 1076
2y 1092 | 1092 1076 1076
b 1092 § 1092 1076 1076
o 1885 1076 - 1092 1092
A 1134 1134
o 1245 1245
1365 1365
v 1477 1477
! 1890 1645 1645
iahle 1784 ‘ 1784
e 1969 1969
g 2202 2202
i 2350 2350
1895 2415 2415
Y, 2615 J 2615
b 2645 v 2624 2624
04 26247] - 2645 2645
o 2684 | 2684 2684
| 1900 2684 | * 2684
2712 2712
2816 2816
e 3138 3138
e 3192 3142
. X ; 1%5 3605’ v t J 3605
=
S
t .:.)‘
Wi
HN
.
:1:
1
_:,:::, ;
s
P
.r,:.r
Tae
nie
=
.(4:'
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exhibit 3

Intraswoosh smoothing, initial version
(Values in ( ) are Jocked peaks and locked valleys)

t y Ay Ay? %Ay.’ Hy, |Hy, 425 HY 450 HY, 415 HY; 4100 HY, 4125 HY: 4150

1796 115 8 7 (115r| 426 552 819 2574 4053 8988
123 45 37 9 132 | 456 538 893 2646 4381 (9017r
168 27 -18 4 164 | 471 (531) 961 2670 4659 8381
195 22 -5 -1 194 | 472 537 1017 2683 5035 7924
1800 217 O -22 5 212 | 473 550 (1051) 2692 5311 7672
217 25 25 6 223 | 476 568 1038 2746 5464 1594
242 9 -4 -8 (242)| 482 593 1026 2871 5625 7512
233 -11 -2 O 233 | 485 604 (1022) 3059 5746 7411
222 -18 -7 -1 221 | 488 605 1026 3231 (6184) 7353
1805204 O 18 4 208 | 493 605 1035 3416 5999 7455
204 8 -8 -2 202 | 496 605 1053 (3467) 5794 7532
196 -3 -5 -1 195 | 500 608 1080 3384 5638 7653
183 45 S8 14 (183)] 515 614 1092 3332 5483 7845
228 27 -18 4 224 | 531 617 192 3310 (5362) 8068
1810 255 S0 23 S 260 | 557 617 1102 3284 5455 8243
305 8 42 -10 295 |(564) 617 1157 3280 5527 8359
313 15 7 1 314 | (564) 620 1247 3274 5628 8437
328 0 -15 -3 325 | (564) 632 1363 3272 (5744) 854
38 5 S 1 329 |(564) 650 1491 3271 (5744) 8606
1815353 16 11 2 335 | 563 677 1038 3267 5647 8647
349 0 -16 4 345 | 560 698 1795 2950 5421 8663
349 0 O 0O 349 | 559 710 1981 (2006) 5162 8802
349 27 27 6 355 | 559 724 2182 2605 4802 9079
3%6 36 9 2 378 | 559 737 2331 3247 4152 9220
1820412 0 -36 9 403 | 559 763 2449 3719 (3362r 9228
412 58 58 14 426 | 532 819 2574 4053 17629 927T™

NOTES: y, is output of Exhibit 1;%&,, is taken to the nearest smaller ( <) integer;
Hy =y + %Ay,’except where parenthesized, where Hy, = y,.

*Only half locked, but treated as locked
*=Values of Hy, .q95 are 9277, 9431, 9615 and (9721)°
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exhibit 4
Smoothed Yale enrqllment

Panel A
(1796-1866)

1600 1820

1840 1860
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5 ‘ smoothed exhibit 4 !
v enrollment ‘

Smoothed Yale enrollment

2700 e Panel B "-
(1825-1900) .

2100

Y 1800 ,’
. 1500 . x —

. 1200 ——

) .
] 1890 1860 1880 1900
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exhibit 4

Smoothed Yale enrollment

Panel C
(1900-1966)

World War 11

1940

1960
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A N roughnesses that might otherwise distract the eye, without eliminating — or evading
‘ ‘l~
) — any sudden jumps or relatively narrow peaks or valleys. (The reader may find it
e
X
5:: interesting to do pure median smooths on the same original data (cp. exhibit 1), plot-
W,
Sy
! W ting the results and comparing them with exhibit 4.
o . ® another revision *
\ " sther way to look at the intraswoosh smoothing that we have just done leads
"\‘r-‘
e to slightly different answers. We can decide to do the H-like smoothing — adding 1/4
_‘;: of the second difference — at all ts where A%y, is not unusual. What evidence might
’ '-\' .‘
"-;: we have for unusualness? Plausibly one of:
o
at
i x a very large value of A%y, compared to what seems natural, OR
o a large, but not very large value of A%y, AND a change in direction of monoton-
QYRS
?.'_L'_'- icity.
oy So let us try this in our examplie. OQur first observation — no surprise to any of
0 »
;Q‘{ us — is that A%y,’s seem to be larger where the enrollment y, is larger. Over most of
WY
oy
v' the range of the data sequence the ratio A%,/ y, seems to behave fairly reasonably.
“ (This may reflect the fact that “first aid” would have urged us to work with loga-
' .
) J“.{h
:::; rithms of enrollments.) If we go over to these ratios, and look at (2) only non-zero
3 JA‘\ y
,,-*-:C ratios and (b) only for t > 1825 we find a median |14%,/ y,| of 2.8%.
£ !
’ 5:‘_‘ It is thus plausible to pay special attention to
‘. -
i If 1) all values of 1A%,/ y,! that are > 3(2.8%) = 8.4%
N
pial 2) and those at a turning point that > 2(2.8%) = 5.6%.
‘\'::_‘_: Doing this produces the following special attention list
NN
4 ; :: i
e,
5
i .‘_:a
" ¢
*ii
S
"y
o

. I8 O WA
» Q‘; " SR W "".l ..Q‘hi‘h
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Years | A%y, / ¥, | Comment

1903 to 1905 10%, 11%, 10% Fluctuating policy (?)
1916 and 1917  38% and 90% World War 1
1920 to 1923 11%, 13%, 13%, 14% Fluctuating policy ¢))
1929 11% Stock market maximum
1934 6% Minimum
1943 18% Early World War 11
1945 to 1947 180%, 58%, 8% Return from World War I
1950 9% Arrest of decline (?)

Before 1825, where the 1A%,/ y,! are generally larger, we must surely single out

1797 30% m

1808 32% minimum (why?)

and probably perhaps should include

1802 14% m
1811 14% step (why??)

1820-23 9%, 14%, 12%  break (why?7?)

If we leave out all the years thus listed, making the +A2y,/ 4 adjustment every-
where else, including at the lesser extrema at 1802, 1835-40, 1857-59, 1875, 1877-79,
1938-39, 1948 and 1955, where the size of | A%,/ y,! does not seem to justify special
attention, we get the smooths shown in exhibit §, which look ratﬁer like those of
exhibit 4.

However, when we look closely at the points — which have been plotted with a
0" - - where the A%y, / 4 adjustment was not applied in exhibit 5 - - we can see that
the earlier set (exhibit 4) acts as if some otherwise dull maxima and minima were
something special. On the other hand, the later set (exhibit 5) tends to emphasize
certain “breaks” as apparently special — e.g. 1821-22, 1905-06, 1916-17, 1922-23, and
1943 and 1945-46. It also indicates disturbance for 1836-38 and 1846-48. Thus the
former (exhibit 4) might be more useful if one only wanted a set of smoothed

values, without interpretation. And the latter (exhibit 5) would certainly be more
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exhibit §
Revised smoothing of Yale enrollment

Pane]l A
(1796-1870)

1810 1820 1830 1840

........

1850

)
. .

1860

. n N
S

1870

s N



. -63-
o .

o enrollment
exhibit §
. 2700 ______ Revised smoothing of Yale earollment
- o>
AN Panel B «
\ (1825-1900)

»

1800

. x
o
1500 —— . —
-
=

-
ol 1200 ——

' s
- | somy «~
. 137274 em—
600 —— (1 (200 A
’”.rf'“ Com

2 1840 1860 1880 1900
- ‘.J'_




-64 -

exhibit 5
Revised smoothing of Yale enrollment

: Panel C
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helpful when one wants a smooth that identifies particular points that appear to

respond to either an internal decision or an external event.

This teaches us both (a) that it is not easy to pick out a super-good smoother
from a collection of good smoothers — a Jot of examples may have to be treated to
provide comparisons to establish the kinds and frequencies of relevant differences,
since seeing an apparently good performance in one example is awfully little evi-

dence — and (b) that it will often not be crucial that we use the absolute best.

* alesson *

One lesson the potential thinker needs to learn from this example is that
differences among relatively good smoothers are of ten concentrated at relatively

infrequent situations.

® choosing the cutoff *

In dealing with " Where should the application of the .25A%, smooth be cut back

to zero?” we have to recognize that most instances of Ay, = 0 are the result of three
equal values for y.—;, ¥i. Yi+1- These will probably have come about through the
action of 3R, 5R, .. and offer no real evidence of how large A%, would have been
were it not zero.

While in EDA (Tukey 1977) we introduced "starred letter values” where exact
zeros count only 1/2 each, it now seems natural to introduce "double-starred letter
values” where all exact zeroes (or, conceivably, only exact zeroes of the form 0 - 0,
both first differences zero) are excluded from the assessment of typical |A?l. The

analysis underlying exhibit S was done with

cutoff = 3median™{1a%,!/ y,}

and would, for a more simply behaving sequence, have been done with

cutoff = 3-median”{ 14%,!}
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Some such choice seems reasonable, at least until we learn more.

Thus G, if we use this notation for the revised version of the limited form of

H, is defined by

L ES
N
[ -’L{

v
'). .‘-"
e

Yo if 1A%, | > cutoff
YTy, + 254%y,  else

~/
P
o)

with “cutoff” as in one of the previous formulas.

a

Repeated applications of G, as in GG or GGG, have not been excluded, and may

K
v
N
L:'."

prove useful in suitable circumstances.

¢ suggestions *
Seeing this example obviously generates some interesting possibilities for
future study. These seem at the moment to fall into 3 categories:
1) Do we need the step that works on ends of abutting swooshes?

2) What would happen if we used the revised approach on either raw data or

much less smoothed data? Need we treat locked peaks and valleys specially?

3) Why not go to LOCK-4 : 3R : LOCK-4 : 5R : — instead of LOCK-S: 3R :
LOCK-5:5R: *-* in the first part of the smoothing?

For the present we leave these questions to the reader.

* should the cutoff be smoothed? *

In a more conventional robustness context, the discontinuity — placed at
(3XM™) in the example above — between applying the A%y,/ 4 correction in its
entirety or not at all, would seem to be a lack of smoothness in an amphitheater
where lacks of smoothness usually seem to require the payment of a penalty in loss
of performance quality. But robust smoothing is not a highly conventional aspect of
robustness — in particular, because the various smoothed y, are not of ten looked at

individually. Moreover it is a3 area where, if we choose, we can identif'y, either in
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) a table or in a graphic display, which points are receiving which treatment. We
) know little about criteria and performance — this Jeaves us knowing Jess about the
;: choice between clear discontinuity and more diffuse contipuity. Further exploration
f:;:,: would be likely to settle this issue, but it is not clear that any great gains are to be
e made from such a settlement.
t'::;c. ¢ drift in emphasis *
::!!‘ We notice that, while our initial approach to swoosh-swoosh smoothing placed
_‘_‘ heavy emphasis on the distinction between moving up and moving down, the later
E ,3:3 versions weaken such emphasis considerably. And the question has been raised — see
)‘ (2) above — as to whether we could profitably eliminate all reference to "up” and
*down". Such changes are not to be thought of as either unlikely or unwise. We are
E :i exploring the vast wilderness of the nonlinear — we should expect to follow natural
B2 - paths, even if they lead us toward an oasis different from the one toward which we
::: started!
a
* *rasas 10. Detrivialization seszss
- If we force the evolution of swoosh-swoosh smoothing far enough, we come to a
‘;::‘5:' position where we admit, as our basic striving
L
fi‘c @ to eliminate small rapid wiggles, while preserving both slow changes and
"3'.' large rapid wiggles.
.-':S The later modifications of swoosh-swoosh smoothing go a long way in this direction,
.- but it may help other aspects of the reader’s thinking to suggest some more general
E,'T‘S': components that may prove useful in this connection.
EE:.?: Let us write A%y, in all our definitions, but let us bear in mind that it may be
X much better to use A%,/ y, or A%,/ y' ? in appropriate circumstances.
o
5';:' ®* g class of indicator functions *
ey
5 .
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' i _

gggg > The novel characteristic that entered the later subassemblies of swoosh-swoosh

A smoothing was a “sometimes yes, sometimes no” application of a component accord-
. J‘:

~'_"-:'{- ing to the value of 1A%y, !. If we let A stand for the choice of a % and a multiplier,

b '

VNG we can define an indicator 1,(t) by

ﬁ* © 1, when 1A%, | > (multiplier) ("% point of 1% )

N IA(t) =

.33 0 else

w

with this notation, we can write

-

§ :'j: G=H unless],(t)=1
; \ '.’
O =1 else
b -f %
6. M
2L where 1 is the identity, for the application of H except where (A%, | is large.
& “’:::-
; ‘\_ We can also, for example, ask about the behavior of
-3
T
Lo 3 unless Lt) =1
b Pae ‘
i‘ , separately and in combination with G, where B may equal A, but may involve a
O
::' different combination of “'% point and multiplier.
s
!
(N * rank rather than value *
A
&
i Another approach would be to calculate all | A?| sort them, and then act on the
1 "-".'
R smaller ones. Perhaps the 80% smallest? Perhaps the 90% smallest? Perhaps do it 3
[ 4 times (like 3 hannings) for the 55%, 65% and 75% smallest, respectively. (Much
B\
\"‘-; exploration is probably needed.)
. ) P 1
. Or this could perhaps be combined with the use of indicator functions.
, Here then is another "landfall outside the Mediterranian® whose exploration
7
. may prove useful — or uninteresting.
O
‘4'2: sssess ll. .suprmwthm. s8888 S
L. There are purposes for which a very smooth smooth indeed seems appropriate.

o
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One of these is to prove a somewhat more fiexible alternative for both (a) quadratic
polynomials and (b) singly-broken lines (monogons) when considering the

\4 replacement of an assumed linear dependence by something slightly more general.
g .
f;'j Most such smoothers operate by fitting a straight line to a section of the data
o surrounding the point in question. If there may be exotic points, either this fit has
K}
sﬁ to be robust, or there should be a preliminary application of some other robust
.r?_\? smoother.
A%

Almost all smoothers belonging here have one or two tuning constants, to be
.
\

) sdjusted to fit each specific situation.

o .
Sy
e We do not plan to review this class of smoothers with any care, contenting our-
PAY
s s selves with identifying some of the most used by name and suggested feelings.

One is W. S. Cleveland’s (1979, 1961) lowess smoother. This has seen quite a lot
o

AT of use, and seems to be quite effective. Further detrivialization might help the
o output’s appearance.
)
W53
"-.f; Another — or a group of others — comes from Jerome H. Friedman and his co-
O
“' workers. (See Appendix B, section Bl, for further discussion and reference notes.)
.“ It is specifically planned for use in re-expression, for example as an important part
SRy
,?»:2 of the ACE routine.
e The procedure for robust spectrum analysis discussed by Martin and Thomson
fo (1982), iterates the two-phase stepe

.
Ko
B
o fitting of a simple extrapolator
Oy '
7’“ depending on an estimated spectrum, followed by redescending modification of
o5 innovation = data MINUS extrapolation
4,
- While intended to provide a robust spectrum, it does a very good job of eliminating

~

3':.4 exotic values and should be a near-ideal first step when longer sequences require
NN
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) robust smoothing.

ssssss 12. Smoothing within bounds ssssss

A not infrequent type of problem involves not only values {y, } but measures
{s,} for how closely each is likely to be to what it ought to be (unless it is exotic).
Doing a good job of responding to this-problem will require much more experience
than we presently have. Particularly in a piece directed at how to think about such

questions, however, there seems to be a place for some tentative explorations.

One very restrictive version would be to look at

median | Yo, Y= Sts Yie Yo + 5, Year}
which always lies in the interval [y, —s,, y +s, ] and can be thought of as a generali-

zation of head banging.
When we come to iterate such a smooth, we will want to replace y, .y, ¥, ¥, 41 DY
their respective smooths z,_,, 2,, z, 4, but to retain y,—s, and y, +s5,. (Similar reten-

tions should occur for the versions that follow?) It can be schematically indicated as

x |1 (4)
median | xxx |
x 1 (=)

where the parenthesized values are multiples of s, and the columns (not the rows) in

the first section correspond to subscripts.

A second, closely related version uses

median 'yl 1= Simpe Ye=1¥Sicp Y280 Yi=5is Yo i ¥Sis Y 425, Yra1mSi-p Yiarts, -H’

which can be schematically indicated as
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This result has to fall in [y, —2s,, y, +2s5, ] where t is again the schematic horizontal
axis, and will often fall in [y, =s,, y, +s5,] If we were to iterate, it is not clear which

values should come from the current smooth and which from the original data.

Once we have reached this pattern, we can go over to an end-value-like con-

struction, replacing

Yi-1—5 -3 and y,_y+s5,

by
Y1 and 3y,_2—2y,_3
and replacing
Yi4e1=S:41 and Yy, 4y S
by

Ye+1 and 3y, 42=2y,43
This version seems only likely to be helpful after some initial smoothing, though we

must try it out before we understand it.

Firm constraints to [x, —s,, x, +s,] or [x, —2s,, x,+2s,] are likely to be too severe
if exotic values, which may be far outside [y, =2s,, y, +2s5,] are at all likely; if, for
example, we need to face up to measurement fluctuations of estimable size AND to

exoticity. In such circumstance we might try such components as

x 1 (+4)
x.x: (+)
median{ . x I
x.x 1 (=)
x (==
or
xxx :(+)
med).x . |
xxx | (=)

which, for each ¢ involved - - each column in the first section - - have more entries

D faal Ahauh el

I |




-72-

with subscript #¢ than with subscript = t, and, s a result, are not so rigidly res-
tricted.

$sssss 13. Functionalization ssssss

We introduced a class of smoothers (at the opening of Section 11) as more fiexi-
ble alternatives for simple functional forms. Successful fitting of one of the (some-
what?) more flexible forms inevitably leads to the question — motivated by the twin
advantages of parsimonious description and of knowing how many constants are
effectively being used — "can we do almost as well with a relatively standard

parameterized functional form?”

Dealing with this issue requires us to identify some useful functional forms,

and consider how to fit them.

Quite a lot of thought and experience tends to leave us with a very few func-
tional forms. Their behavior ot: most of these is easily describable in terms of their
“"lodid" or "logarithm of divided difference”. This is given, for z a transform of x,
and the (z, x) pairs ordered on increasing x, by the combination of the logarithm of

the magnitude of the divided difference

! 2y 4172
log! ——ono
| Xre1™% |

and the sign of the divided difference.

The proposed standard forms are as follows

nature lodid behavior
singly-broken line two constants, abutting
quadratic (around extremes only) (first divided-difference linear in x)

exponential ) linear in x

power (probably non-integral) linear in log x

LT T T T S R T TS R
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*';’ ) Notice that quadratics are NOT to be considered unless the presence of a max-
S imum or minimum (possibly somewhat outside the data support) is quite certain.
-:;:_ Appropriate techniques for diagnosis and fitting have been described under the
:';: name of “smelting” (Tukey, 1981).

o ssasss 4 AWhutoeqnivariance ssesss

fi We often like our data manipulations to have some form — or forms — of com-
" patibility with simple modifications of the input. And then there are times when
.,:'; we are careful to avoid such compatibility.

:"' -i.: Most of the techniques of smoothing we have considered here commute with
‘ 5 "add a constant” and “multiply by a constant”. (The use of 1A%y, |/ y, does not com-
5 mute with "add a constant”, however.) They generally do NOT commute, however,
ij; with “add a slowly changing function of t°, “add a linear function of t* or "maulti-

: ply by a smoothly changing function of t".

‘j.: It may help to look at one instance of such non-commuting — so let us take the
simplest non-linear component we use often - -"3" - - and three successive values of
___). y; say 15, 12, and 30.

=

, ::‘ If we add nothing, we have

v

N 3" applied to 15, 12,30 is 15 which restores to 15

: k: where "which restores to" means "if we subtract, from the median of the three

-": values (here 15) the value at our center point of the added linear function (here ident-
o ically zero). (After all AC = CA means C~’AC = AY)

If we add a linear function of slope 3, say the one with values 100, 103, 106, we
, "3" applied to 115, 115, 136 is 11S which restores to 12

o

i
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If we add a linear function of slope -10, say 200, 190, 180, we may have

“3" applied to 218, 202, 210 is 210 which restores to 20

More generally, we get the results in the following table:

slope restored value

-30 12
-20 12
-18 12
-15 15
-10 20
=225 75
-5 20
0 15
3 12
5 12
10 12
20 12

where “12° continues unabated for either very large or very small slopes, but a

tent-like broken-line dependence takes place between -18 and +3.

H

Clearly "3"-based smoothers are not equivariant under “addition of a linear
function of t".

What can we do about this? Roughly, oar choice is either to “forget it” or to
both fit and subtract some linear function of t. Clearly the fit can be either global
or regional (= segmentwise); clearly we can fit in any of many ways

The prime versions of "fit and subtract” are the (Cleveland) versions of super
smoothers (see Section 11). (It is an interesting question if the Martin and Thomson
procedure would be slightly improved by fitting a low-order polynomial either
Jocally or globablly.)

But we can promote equivariance in simpler ways. V}e might, for example,
smooth

(isr12— 312/ 24
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very severely, and use the resulting value, b, at t = t as a corrective slope for
a) applying °3" 0 y,_1+5, yi» Yis1~d, AND
b) restoring the resilt.
The point is We can do such things, so we need to think about doing them.

These brief indications are included in the hope that they will stimulate both

other ideas about, and some comparative study of, smoothing within (or guided by)
bounds.

sssses 15. A very different application ssssss

Median smoothers were suggested (pp 631-634) for relating apparent “lines" to
background in Tukey 1984}

16. Conclusions.

Almost all conclusions have to be temporary. We have explored only small
patches of the non-linear continent, patches conveniently close to the linear sea and
some of its tributary rivers. And we have not been able to help pure exploration
appreciably, as yet, by formalizing realistic goals. A few general points, however,
seem unlikely to change.

s diversity *

Weneedtorecogninadivuﬂtyddma.mdn-ywmeetthemwiihadinr-
sity of smoothers.

¢ delicacy *
Distinguishing among smoothers that are st Jeast fairly good for the purposes
st hand is a delicate matter. Performance for one data set — or for ten data sets —

may just not be enough to tell us which is to be preferred. Equally, it may not

matter that much which one we choose, although it might.
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* exoticity *

Techniques which in one way or another treat the exotic differently from the
usual are important — and can play very different roles. (As when resistant smooth-
ers pay minimal attention to exotic values — but the final phase of swoosh-swoosh
smoothing leaves large |A%y, | unadjusted, while smoothing others.)

* experimentation *

Theory is almost certain to consist of numerical experiments, often with sto-

chastically defined inputs. Formula manipulation has so far taught us little.

* erosion *
Some problems will clearly be with us as long as we amooth. One is erosion — a

problem for which we have suggested a variety of palliatives. Reroughing does a lot
to minimize the consequences of erosion, but we clearly do not think it does enough
— else why would we have suggested so many modified components where the
modification serves to reduce erosion. Moreover, absent erosion, no one might have

invented "swoosh-swoosh® smoothing.

Erosion will not go away! But we can expect more and newer devices to cventu-
ally reduce its impact still further.

* reader’s suggestions *
Suggestions from readers for other useful subjects to be pointed up in this sec-
tion would be particularly welcome.
Other comments and suggestions are strongly encouraged.
I am happy to thank David Brillinger, David Donoho and Colin Mallows for
helpful comments and suggestions, for whose filtering and alteration I take full

responsibility.
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Appendix A

 Antirobust non-linear smoothers and the Beveridge
wheat-price series

David Brillinger suggested to me that the famous Beveridge Wheat-price series
would be a useful test bed for some newer non-linear smoothers. So some of these
were tried out, and, as a consequence, the behavior of the Beveridge series was
examined and considered. As detailed below, this series, far from appearing to
contain exotic values, seemed to be less irregular at its local extremes than
clsewhere. Simnce such behavior seemed not unreasonable, and might occur in other
instances, a smoother was developed which was anti-robust in the sense that the
initial steps involved picking out extremes and taking means, with median-smoother
components relegated to a minor role, later in the process. The present appendix sets

out
a) the structure of the resulting smoother,
b) the resulting smooth, AND

c) the resulting rough

where all calculations are based on a logarithmic form of the basic series.

¢sssss Al. The character of the Beveridge series ssssss

A convenient source for the data is pages 623 to 626 of Anderson’s book
(Anderson 1971). This source gives, as Beveridge did, (i) actual index numbers and
(ii) a "trend-free index” obtained by division by a 31-year running mean. Since our
aim is an additive breakdown, the words “index number® and “division® are trumpet

calls toward the taking of logarithms.
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It seemed convenient to use logarithms matched at 100 - - 30 that 100 — 100 and

80 that the slope at 100 is unity - - this calls for

. e index
100 In(index) ~ 100 ln s = 100-1n( == e)

for which some illustrative values, rounded to integers, as was done with the

Beveridge series, are

index log [lindex log

25 -39j 100 100

50 31 110 110

60 49 125 122

80 78| 150 141

%0 89| 200 169

100 100( 300 210

These illustrative values show rather clearly the qualitative character of the

reexpression ased.

When the original series was modified only by some interchanges of adjacent
values, the resulting series for 1700-1869 (the second portion of the series that
extends from 1500 to 1869) appears as in exhibit Al. One fairly clear impression
that one gains from this plot is a surprising degree of uniformity of size of the ups
and downs. (The next most noticeable appearance is the bulge at 1795-1815,

contemporaneous with the Napoleonic wars.)

The appearance of this plot is sufficiently well-behaved as to suggest

experimentation with smoothers concentrating on local extremes.
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exhibit A1l
The Beveridge series for 1700-1869

(a few pairs of adjacent values interchanged)
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s$8888S 2. The XH3RP smooth ss8sse

The result of a little experimentation, biased toward simplicity and the

.:i'“.‘_-; avoidance of ad hoc choices, was a smoother involving the successive appliiation of
)
4 ::j the following components:
ey
Jfirst). No preliminary tinkering, not even adjacent interchanges.

W
1ho'Yy second. X - - identification and selection of all local extremes (centered time for
'h r

5%
k" : adjacent ties), which must alternate between highs and lows,
LA N
. third). H - - banning the selected sequence - - this means linear combinations
el

‘j}: . 'with weights 1/4, 1/2, 1/4, so that total weight 1/2 goes on one or two lows,
:ﬁ?’ and an equal total weight on one or two highs,
& I fowrth). 3R - - meaning medians of 3 applied "to death” (i.e. repeatedly)
Ll
[ A
E‘_ Afth). P--in which short stretches of tied maxima or tied minima - - extrema
s within the XH3R series - - are replaced by the nearer (in value) of the two
i adjacent values - - in the XH3R series; here "short stretches” was taken to mean
:Z:_:::'_ exactly two adjacent values in the selected series tied, the proctss was iterated
-

(8 as nm-
o _
;.s It can be argued that the fifth comvonent was slightly ad hoc. However, much
‘ -
"E: experience with 3R indicates a real need to do something about tied extremes of
195
Cur length two. Thus our choice does not seem to be seriously ad hoc, though it may be
r!.:::? too weak.

<

Nﬁ Exhibit A2 shows the calculations, for all 156 extremes in the original 370-long
b
’ ‘.!.
q .-'\- |
e Exhibits A3 and A4 plot the results for 1500-1700 and 1700-1869, respectively. ‘
e : 1
b |
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:E\: exhibit A2
® The application of HIRP to the extremes (X) of the
2y Beveridge wheat-price series in 100-matched logarithmic form
[ (only changed values shown in 3R and [P] columns)
e Yar extreme X > H 3R [P] [[Year extreme X > W ®m [P
N
' 1500 7 L 1583 €2 H % 39
e (5} 61 H -9 .76 =" 33 L T S
QY 04 104 L -79 -9 % 112 H 41 7% 6
DY 07 .97 H 1128 -100 -9k [9m]l 88 47 L em e s
AN 09 a1 L 72 -%h [o1n)f| 90 7 H S5 65
o 1512 47 H 99 73 1591 € L 75 6
14 77 L -S4 65 -13 92 n H 63
— 16 61 H 87 -4 [73) | 93 63 L 715 6
-~ 18 97 L 52 -74h -74 [-73) ||159% 109 H sm 4 M
N P3| 43 H 9B 68 -7 1601 S4 L % 70
2o 1522 0 L 52 -7 2h 64 H S22 S8 e [m)
e 4 61 H 9w 71 -m os S1 L B 66 )]
N 2s 97 L 42 -7 09 97 H 62 80
‘s 31 24 H %0 -57 -s8 [67] 10 7% 1* 89 81 80
N 4 83 L -3 -58 (7 f111 @ B % 9 w0
o 15358 51 H 83 €7 12 ™ L* e 80
o 37 83 L -589 -7 13 W B 7S Th
™D 38 66 H 80 -3 -7 15 nm L ® (7]
’ 0 77 L -4 -5% 17 % H ¢ 715 T (™
e as 2 H -87 44 4% 1619 7 L 100 @
K> t}: 1547 97 L 2 4% 44 2 104 H 73 93 -
Ko s1 2 H 64 -33 24 89 L 114 101h !
A0 s3 31 L 14 -8 -9) 2s 114 H 89 101k ;
YN s6 31 H -3 3 8 [9] 27 89 L 126h 108
- 57 43 L 211 4 9 1630 139 H 92a 116 111 [108]
2 1562 11 H 28 9 7] % L 126 111. {108)
oo 64 -14 L 17 2 k 7/ 113 H 97 105
NN 6s % H 1 6 » s L 108 103
[ 6 s L s 2 40 103 B* 9% 101 103
‘ot 73 7% H s 42 338 [27 Jiea 101 L* 106k 104 102
157 4 L sm 38 Mf @« 1m0 B 2 11 110
— 7 29 H 22 2% 27 ([3a]f 4 $ L 120 102 101
e 78 20 L 3 27 (3] @ 131 H e 9
“E;;:_ b 4 H* 29 3 S0 4 L 13m 8
e 52 33 1L* 3™ 38
o
- NOTES: "h" stands for "and s half”. Column “X" is "H" for high extremen, “L" for low omes. When
il values of "extremes” are very close to ome another, **" is afiixed, for later wse. Columa *>" Is “split-
N j mean”, containing the arithmetic mean of the “extreme” columa valwes for the previous and following
"" lines; ecxample: -90h = %((.71) +(-104) Columa "H" is 3 "line-mean”, containing the arithmetic means of
b the entries In columns "extreme” and “H" is the SAME Iive. Columns "I" show reaning medians of 3 of
the preceding column, repeated as necessary. The “[PI' column shows altered values replacing paired
::: minima or pajred maxima (in XHIR values) by the nearer of the ad jacent valwes.
N
%
}.
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Exhibit A2 (comt’d)
Year extreme X > H k- {r) “Yur extreme X > H = {r}
1651 130 H 4% 8 1768 135 L 150 142%
4 49 L 9% & ;! 161 H 137 149 144 [1422])
55 67 H* 5T &S ()] 73 138 L* 150 144 {1421)
s6 6 L* 105 35 {89) 74 139 RB* 127h 133
61 143 H 60 101h "N % 117 L 13 126
1667 4 L 128 91 1777 130 H 116 123 124h ([126])
74 113 H & 9 115 L 134 124 {126)
76 84 L 105 9S4 "N 7] 133 H 123 131
78 99 H 7T ® L 132 L 150 141
7] 77 L 9% 8 »9 162 H 132h 147 143
1684 9 H* 67 ® 1791 133 L 153h 143
85 64 L* 81 T [7s) 92 145 H* 13g8h 142 143
86 67 H* S6h 62 T [75) 93 144 L* 168 156
1 49 L 107 T8 9 19 H 198 16%
93 148 H 7& 113 97 152 L 198h 17§
1695 108 L 14% 129 121 [113]) || 1800 206 H 162h 184
L 1] 151 H o 121 [113}) 03 173 L 204 18%h 187
1702 73 L* 122 9 o4 22 B 172h 187 1344
03 93 H* 63 78 9% [y] oTh 172 L 206h 189
06 4 L 1266 9 {9} 1 21 H 172h 192
09 10 . H 81 1208 [115) || 1813 173 L 222nh 198 1% [192)
1 108 L 146k 127 {115) 16 23 H 157h 196 [192)
1ns3 13 H 9 115 21 142 L* 189 165h
16k $7.:; L 11% 103 2 14 B 138 141
19 106 - H 81h 9% [9s] 23 134 L* 13% 137 [41)
21 7% L 1082 92 % [95]) || 1824 138 B* 132h 134 137 [14])
28 111 " H 81h 9% 95 [%4] 25 131 L 158h 145
1729 87 L* 108 95 {94] 28 182 H 148h 165 [163)
30 4 H* s &7 (93] 29 166 L 17%h 173 165 [163])
2 74 L 98 8 &7 [93]) » 177 H 179 163
36 12 H 84 93 18 132 L 177 154k 162 (163)
3”7 95 L 125 110 [106h]) 38 177 H 147 162 (163}
1740 148 H 8% 119 110 [106a])|| 40 162 L 172h 167 163k
43 $4 L 129 106h N 168 H 159 163h 167
46 110 H* 9h 103 106k 43 15 L 185 170m
47 109 L* 114 111k [108] || 1846 202 H 198 175 17A
43 118 H* 105 111k (108} 49 141 L 206 17% 175
1750 101 L 115 108 [109n) S4 210 H 4% 180 [176]
s1 112 H 97 105 108 [109h] 57 158 L 206k 180 {176]
4 - L 125 10% 60 19 R 1% 17% [100)
1757 133 H 102 120 1963 18 L 197 176 f100)
60 110 L* 131 1200 120 [ 199 H 184 181k
61 124 H* 111 117k 120h (1} 173 L 19 181h
63 112 L 131h 122 (1se9) (81) R as)
14 139 H 123 131
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' o *XH3RP" Smooth of the Beveridge series
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ssssses A3. Possible/plausible modifications $sssss

If we collect the differences in values between adjacent (unsmoothed) extremes,
we get the results in exhibit AS. The distribution seems quite flat in the middle, as
it presumably should be (?).

exhibit AS
Stem-and-jeaf displays of the peak-to-peak
swings in the Beveridge series (log scale)
16 (at 1500 end) and 8 (st 1869 end) omitted
(21, 22, +3 are underscored)

Stem | 1500’s | 1000’s | 1700’s | 1800°s | Total (cumuwlative)
10* ¢ 1
L 5 9 t 203
] 4 2 2(s)
» 3457 (9
(o 2 19 3(12)
[ 49 07 k7 1 709
4 6 368 47| 4s6 (29)
» 28 os 7 6(30)
b 289 ss | 035678 L ] 13(47
1* 267 057 | 123499 15 14 (61)
[ 457 | 13579 17} 126 13(78)
¥ g 79 922 | 76411 4 13(78)
1* 221 | 8753 8752 | es20 12 (62) '
2 9511 | 9553 | 9sax20 6 15 (s0)
- | 66220 1 90 | 830 12 (39)
- 73 30 é 60 7023
; -5 952 2 2 5(14)
g = s o 4 1 4(9)
o - 4 s 209
o . 3 1
; -» s 2 2
>

If we decide to try expunging extrema which contribute to a difference of only

.,; [

PSRy

-.;l" 2

2 1 or = 2 we get changes in § portions of the series (3 rather near each other in

a

1605-1614, 2 in 1773-1793) as calculated in exhibit A6 and displayed in exhibits A7
and A8. It is interesting to note that, in every case, the expunged extremes involved
adjacent years. |
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e Elimination of extrema costributing 10 peak-to-peak shifts of +1or £2
Oy (blanks in " >" column indicate extrmes expunges,
[P) gives Anal muoothed extremes, (A4) gives last two columns of exhibit A4)
o Yor extreme > H '® [P] A) [Year extreme > w3 [P} WO
2 ’
:'.: ” » g8 42 38 [25) (s®)[2sm]) [17e7 139 123h 131 (a3n)

4 1575 24 S$2» 38 18 (38) [25a] 68 135 150 142k [131X1420)
' ” 29 2 2% 28 Gm)[(3) || 7N 161 126 143 142k [131] (144)[1421n])
A ;] 20 3™ 18 35 QM) || 73 138 (144) [1420)
4 0k 20 (34n) 7 139 (133)

« 2 3 (39) 7 117 145k 131 126)

‘ 83 Q2 an 35 (%) v 130 116 123 124k [131) (124b)[126)
7] 3 $6 (56) 7 115 134 124k [131] (124n)[126]

¥ 1605 51 6 {70] (e6)[™] 7] 138 123 131 (131)

N ) 97 6a 0 7™ [75] (30) 8 1322 150 141 (41)

k) 10 74 ” [7sa] (%0) 89 162, 132h 147 ‘ (143)

ot 11 81 (30) 9 133 176h 155 (143)

o 12 ) [75a] (30) 2 148 (143)

{ 13 80 (7om) 3 144 (156)

- 15 n 0 7% (7m] ("m)[7m] 95 191 142k 167 (169%)

17 86 64 75 7% [™m] (™M) 7 152 198h 175 179)

. 19 57 T8 (Tan) 1800 206 162k 184 184)

,'_ 1630 139 92k 116 111 [108] (111)[108] jj1807a 172 206k 189 (189)
» % 126 111 [103] (111)(108) 1n M 17T 12 G192)

3 »” 113 97 108 109) 13 173 22h 198 193 [192] (196)[192]

. » 98  111n 105 (103) 16 134 152 193 [192) (196)(192]

o0 0 103 (103) 21 142 (165h)

" 2 an ae) n 4 (141)

o~ Q2 110 9 100 102 (102) 13 134 (137141}
45 83 1200 102 100 (102) 7} 135 (137 141]

- 49 131 6Sh 9 (9 2s 131 208 16% (145)

X 1650 4 130 » (99) 28 122 148k 165 169 6s)

i s1 10 . 4 B (29) 29 166 179 173 165 Q16s)

o 4 13 93 9] (=9 1830 177 149 163 (163)

b ss 67 (asn) [89)

) s & (asn) {89)

o 61 43 s 98 93 [n] ()

2 6 4 18 N 1)

N “ 13 ¢ 9N (1)

) 1736 102 ”m 93 93)

“ 4 s 125 110 {103a] (110)[106n)

- 0 148 % 119 110 [108n]) (110)[106R)]

K- ) ] % 133 108 (106n) [110)

, 46 110 (1060) [110]

% : 47 109 (111n) (108}

¥ 43 118 92h 105 108 (111n)108]

] 20 101 115 108 105 - 108 (108)[10%)

o s 112 97 105 108 (108) [109]

N 4 4 125 100 (100m)

~

5

\!

b
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. ‘ Effects of modification
b (1360-1670)

" .
« Q

';iuule |
““

D= both
K2 = 00 0 = original
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T e X = modified
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E._-:: ssssss A4. Smoothing the peak-to-peak changes ssssss
v
o We have looked at the general trend, but not yet at the degree of oscillation.
3 T Exhibit A9 smooths the absolute values of the peak-to-peak swings, the result is plot-
? ted in exhibit A10.
: We can inquire into the reasonability of our omission of the + 1 and = 2 swings
“\,3 by noting their effect on the smoothed peak-to-peak values. Calculations are exhibit
:;.EE A11, where the one = 3 is also excised and the results in exhibit A12. All the deep
valleys in exhibit A10 have disappeared; most of the changes have had such an
E" effect. Onthwholetheeliminationofthetl.zzm::Jclnnguneemntolnve_
o been helpul |
: _ There {8 some reason for suspecting that "peak-to-peak” assessment of swing is
less stable than other assessments might be. To this end, exhibit A13 shows a
e | peak of one kind MINUS median of adjacent peaks of the other |
%1 which is otherwise comparsble to the first section of exhibit A12. It scems that this
,'V) assessment may be more stable, but not by enough to urge us to follow through for
~,;3 the other sections at this point. (Ratios of max to min are: 62/9 = 6.9 in A12 and
r{ 64/15h = 4.2 4m A13)

,, sessss  AS Detrivialization to smoothness  ***ses
f;) Turning back to the modified XH3IRP smooth (cp. exhibits A3, A4, A7, A8) which
"::'-3 is intended to portray “"typical’ behavior, we easily see that the greatest improve-
%, ment in overall quality is likely to come from the removal of distracting wiggles.
\,E To this end we can apply detrivializers.
2
.-?Cg
e
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exhibit A9
The swings from peak to peak
(not counting either 1500 or 1869 as a peak)
sviagg (®) amd thetr [owing ©) jewings () and their [[swings () and their
smoothing i amoothing smoothing
date date dawe
43 16 1503 <7 23 -2 » 1mo 2 2 18
«7 M os «“ 17 2 0 1M «* 10 3l
4 os 23 10 4% 14 -10 4 -1
4 D 10 A 419 » 18 +1* ] 2
-0 13 r 2 % 2 20 - 4 1M
+16 0 1818 a1 2 +35 27 +$7 16 1826
% 3% 17 9 9 4 34 172 -16 16 1Y
4 & 20 “1s 18 +7 20 2% +11 16 %
47 & 21 2 28 20 20 3 S 16 n
«29 &7 23 +57  2s +28 20 7] +4S 16 189
-3 47 152p 25 128 7 28 36 1S 16 18
3 % p 28 2s +53 & 173 «“ 16 «Q
-» n n 25 28 “ « Q -12 16 Q
2 n 2 +50 25 % 26 “ “ & “
2 n F 43 25 = LI a6 41 61 a8
2 D » +19 19 49 9 4 “ a 12
417 2 153! 18 18 17 1 Son 2 52 5
-1 38 » + 9 18 17 2 +37 40 ss
5 a Q 2 9 “ 14 s 40 40 Q
5 e 4 9 9 28 14 ss “ 0 “
+95 6 4 27 9 +14 14 17%0m 26 26 1867
2 @ 15 +8 13 12 14 1762
N €« @ s4 13 18 27 14 66
0 4 6 S6n +s12 13 4 23 (39
Pt 4 s 6 1 18 26 23 7
‘N 25 38 63 «<18 18 23 23 1™
e +38 38 1%% 1 18 1 n ™
o -2 o +77 18 2 2 s
N +4 38 ] 2 9 +13 1S 7%
' 2 9 “ +9 9 s 18 7
X + 9 » 29 2 <23 15 1"®
L 9 9 15 «a13 4 o
s 20 9 » 27 +30 23 87
b -2 9 1 +28 28 29 2 %0
N “ 9 o 31 2 » 2 91h
= -7 ’ 83 +r 25 ‘1 » “
AT «77 13 1588 18 3 “ » 2}
B £ 13 ® 9 0 » » ”*%
8 28 1 » 40 43 s » ”
o 2 » 3 “3 & 33 M 1
Y 2 91s s & 29 % o
. 12 12 15 “2% » -0 % oS
7 ““ & L) 39 » +39 33 ]
igh S5 & ” +106 » -3 138 12
- +10 4 160 52 » “1 33 184
R
g
*3RSS, twice applied 1 abeolute value of swings.
S5
<
b2t N N N {4
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The smooth of peak-to-peak
(from exhibit A9; 1st 2 panels)
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exhibit A10 (cont’d)
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The smooth of A9 for 1760-1869
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&
by exhibit A11
v
i Modified swings and smooths
Q*l"
;‘:i::‘: swing smooth year (i swing smooth  year .
X
-":{u “ 33 157 +27 14 1766
o 2 9 74 4 2 6%h
9 9 ™ +26 26 b,
r —~+23 9 ® “ 2% ]
o 9 ® ssaf| s 15 760
X ™ ss s 1S 7
A S 4 » 423 18
a"z 3 *» s 2
12 12 15%m +0 2 87
. cees »® 2 %
o +10 46 1602 || —+58 93
i 72 04 » » 9
B 46 2 o7 4 w9 98
'::.' —~-26 26 12 29 3% 10:m
s Y I 16 0 3% 06
29 28 18 » 3 09
Y +57 25 1620 38 12
) 419 19 163 +61 6l 7]
Et s 19 » [|=103 @ 2
L -1 1 ull s a 26
o +48 19 47 16 6 2%h
o a3 18 onfl 11 e 29
i 12 1 S0n 45 23 LY
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WAt exhibit A12 (cont’d)

Smooth after dropping
(third panel, 1760-1864)
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) exhibit A13

'::\ Sample section of smooth of
k' s | peak-to-median-of -peaks

o (compare with 1st section of exhibit A12)
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seiepd,
20.“1' | L P
? |8 We choose to apply first Dy;) and then Dy;), followed by 3" where
el

M ALY = Vi3 — 2Yi + Yies
::S' \ A% =2 — 23, 4+ 4y
et ! 1
}::%, - Doywi=wni+ 745)!’» for most i
.:,_,:,‘,Q

=3, whenever| syl > 3med | 4|

%)
e Doy =%+ (Adw,  for most §
R
s, =, whenever | sl | > 3med | dn|

o

. The opening calculations are given in exhibit A14, and the points are plotted in

el 9
:‘:‘5‘ exhibit A1S. (The final “3" made very small changes in 3 places - - by interchanging
L0
A two adjacent values - - in 1719-20, 17534 and 1757-8, in addition to the small dis-
placcment (at 1702) shown in exhibit A14)
T
Tt This final result is very smooth to the eye, except for 2 or 3 clean breaks (at
e 1736-7, 1784-5, and possibly 1718-9). It might well have been even smoother had we

Yo worked to one more decimal place. It shows the *Napoleonic hump® superimposed on
s ,
‘ a slowly rising trend (about 100 logarithmic units in 180 years, about 0.55% per
e year).
Oy We can have visually very smooth results from simple, precisely defined
Yy
‘-; smoothing techniques. Detrivializers can help a lot in this.
4
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Detrivialization of linear interpolates in XHIRP smooth.
(med ™| A3; | from 1700 to 1866 is 2.5, med™ | Af) | te 1)
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Notation: (1) interpolate between XH3RP points. As) = ¥i~¥}->

a3 = A(,,ati-o-3hﬂNUSAsati:-:-(m)= 384 except "¢ (taken as zéro,

when | A3) at i | 2 3 median | A3) at j | (2) = Df(1) = *(1) plus '.z-(-me)'

A, = z~3; ), etc. (3) = Dy(2)
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Appendix B

More on "local linear” smoothers

s$s333: Bl. Recent work at Stanford sssss2

The most recent work by Friedman and his collaborators involving local-linear

fitting seems to be embodied in:

Jerome H. Friedman 1984. °* A variable span smodther,' Technical Report No. S,
November 1984, Laboratory for Computational Statistics, Department of
Statistics, Stanford University.

John Alan McDonald and Art B. Owen 1984. "Smoothing with split linear fits,"
Technical Report No. 7, July 1984, Laboratory for Computational Statistics,

Department of Statistics, Stanford University.

In Report No. 5, Friedman develops a locally-linear fit smoother using updating
to make multiple choices of span, and eventually a variable span, computationally
affordable. Absent exotic values, this smoother is reasonably attractive, both
because of its performance against moderately difficult inputs and because the
rationale for the various choices in its use are quite clearly explained. It is thus
particularly important to emphasize that it is neither a robust nor a resistant
smoother. (And that it does not take advantage of twicing.) All the local fits of
straight lines are by least squares, and can be drawn far off by a relatively small

number of exotic values.

A report dated 3 months earlier
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Jerome W. Friedman, Gene H. Golub and Werner Stuetzle, "Project ORION, Final
Report, August 1984 (ORION 026) Department of Statistics, Stanford University

said (page 8, para 2) "In addition to the LCV smoother a rejection rule for outliers
was developed. I/ deemed necessary (emphasis added), the LCV smoother can be
preceded by application of the rejection rule to the data set, thus making the
combined procedure resistant.” It is far from clear what smoother Friedman ef af
would recommend when.

The smoother of #7 appears to be constructed to allow matching some of the
properties of median-based smoothers — not indicating their abilities to deal with
exotic values — within the framework of locally-linear least-square fitting. Its
robustness is harder to assess than that of the previous smoother. By using a
weighted combination of results for several windows, many of which extend only to
the left or only to the right, it secems likely that this smoother has gained some

robustness.

ssssss B2. Comments on "locally-linear® fitting ssssss
Discussions of "locally-linear” smoothing emphasize the geometric image of
fitting local lines, but rarely come to the nub of the matter. As Friedman points out
(1984, page 4), the simple moving average smoother has two serious shortcomings “it
does not reproduce straight lines if the abscissa values are not equispaced” and it has

"bad behavior at the boundaries”.

Why does the "locally-linear” smoother do better? Essentially because the fitted
line is of the form
] my + b,(x—i.)
where m, is the mean of the y’s in the window associated with x; , X, that of the x's,

and b; is the corresponding slope. The value at x;, which is the locally-linear

smooth, is thus

™
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B
. m; + by(x—E)
':‘ where, away from the boundaries, x;—X; is of ten both quite small and an irregular
4 function of i. The difference between "locally averaged® and *locally linear”
smoothers is thus a correction term involving b; as a multiplying factor. Thus it is
_ appropriate to consider that all the complications involved in producing a well-
j tuned locally-linear smoother a a fixed span are concentrated in finding a reasonable
3 3 sequence of estimates for a sequence of local slopes, which might be attacked in
F d other ways. The remaining effort involves choice or mixing of spans, a matter of
»jf considerable importance.
S s$sssss B3. Cleveland’s lowess sssssse
' The basic reference still seems to be Cleveland 1979. Lowess, although
, (Cleveland 1979) discusses fitting polynomials of other degrees, uses robust locally-
: - linear regression with compound weights — products of robustness weights and
Y window weights, the latter falling to zero at the furthest edge of the local window,
31 ~ which consists of the r points x-nearest to x;, where r = nf for some chosen f <1.
. (Cleveland, at page 834 (center right) worries about window-finding
4 computations of order fn. Fortunately the division of ther poini: of a window
“ into some on each side can be handled by bisection — comparing | x;- x, | and | xg-x; |
. to learn which way to go, so that one window can be found in order log r = log fn
:\: steps. After complete sorting, all windows can surely be found in order n log fn +
;- log n steps, which is order n log n.
Cleveland further suggests (same paragraph) saving computation by grouping
the x;. It would seem as simple, and more effective, to group windows, grasping a
\ window to minimize

max{! x;=x, |, | Xg=X;4p |}
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I for b given and B-A = r + h, which can also be done by bisection. The single it to
this window can then be used for each of X, X;1, + + - y Xjuao All in all, the
N computational problems of lowess do not appear serious. (Other approaches seem to

r have been implemented.)

In using lowess it is important to realize that r = fn is for a tapered window
not for a cookie-cutter window. Thus f =.5 in lowess is likely to correspond to

something smaller, perhaps f = .3 for a Friedman smoother.

sssses B4. Smelting sssssse

Al

- ot

z

The estimation of local slopes, more precisely of their logarithms, is an

i essential of a procedure suggested by the author for allowing one quantity to guide
:, the re-expression of another. This appears in J. W. Tukey 1981 “The use of smelting
:é in guiding re-expression,” Modern Data Analysis, A. F. Siegel and R. Launer, eds.,

‘ Academic Press, New York, 83-102.

The basic approach involves, for an input of (u;, v;) pairs;

1) a fairly careful smoothing of the {u}, both by modification of values and by
~ excision through replacement of successive i’s with the same smoothed v by a
é single point (placed half-way between the extreme u’s involved)
' j 2) calculation of divided differences,

3) application of a median smoother to these divided differences (or,
equivalently, to their logarithms) to identify which u-intervals should be
combined (either because adjacent values are made equal or because adjacent
values are interchanged)

Comment: the smoothed values obtained in (3) are only used to guide excision!

4) elimination (further excision) of the points whose removal will cause these

L. intervals to be combined.
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"_-E In the re-expression case, we want the signs of the divided differences to be
l'u
constant, 50 we can work with the logarithms of their absolute values. And it is
fy'h
::r of ten reasonable to anticipate that the values underlying these logerithms will be
e .
L monotone.
-
In the "slope for correcting moving means” application, however, we cannot be

J.’
h as sure of any of these conveniences. While stage (1) - - which uses vertical medians,

W
3RSS repeated to death, horizontal midextremes - - can probably be continued

.'

without much change (we might want to use horizontal means in the third

b
G subphase), we meed to at least re-think the later phases.
ae : :
[}
i This sort of approach might lead to an overall structure of the following form:
s
«.' A) Smooth heavily, obtaining slope-estimates based upon excision and divided

o~
‘.: :: differences at a moderate number of places,

>,
Y B) expamd these results to all t by interpolation and extrapolation (linear?,
g constant?),
i
: C) use the result as b’s in adjusting moving average smoothers.
RY

! It is far from clear whether such an approach would prove to be an improvement.
X '
)
s
e
hy

ot
)
3

'!
o
-!'.
!
1'2:

A

NETARINAN: e 91, DY i b, .,‘r Qig“t.q' XX ‘.,U‘th .0” .!'l.!é!h !.b ! |}, !'1 !‘iﬂ,a {,ﬂ 5";,- ‘0 _p:‘?..




-" -
&
'. - -

-10S -
Appendix C
A looming strategy
The example Appendix A and the discussion in Appendix B leaves us with an
anticipation of one important place to go next. Given four things
1) substantial amounts of data;
2) adesired to display the smooth to an eye (or eyes)
3) a belief that “lowess” or possibly a Friedman smoother wonld do moderately
well, taking us guite a way to our goal, and
4) arec;nitionthatithnolongerhrdtodobem(upechnylnmof
visual impression, perhaps even a little in terms of values read “off the curve®)
We now hind it natural to plan to follow, in arder, the steps in the following multi-
phase strategy:
A) ° -obust initial fit, to strip off the most exotic values, replacing them by
reascnable substitutes as an input to the mtm
B) Aqmntymmﬁ;uing'lﬂthedhwdlrincipluofﬁtchatft'
such as twicing, cross-validation and allowance for curvature.
C) Deﬁmnnﬁmwmothamthvhltpolhh(nnyhp;rthnhm

included in (B).)

Of these three phases, most of our attention needs to be directed toward (B), since we
know a number of sstisfactory ways to deal with (A), and expect (C) not to be
difficult. Since we find it more convenient to discuss the issues in a more concrete
context, we plan to discuss both the aspects needing modification and possible
modifications, first for Friedman smoothers and then for Cleveland’s lowess.

sessss C1. Modifying Friedman’s variable-span smoother. ssssss

This smoother (Friedman 1984, detailed reference in Appendix B) basically con-
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sists of three smoothers — woofer, midrange = middler, and tweeter — with smooth-

ing of the qualitative results of cross-validation used to select a linear combination

e
§
? of adjacent smoothers. Exhibit C1 (Friedman’s Figure 2b) shows the three smooths
‘;::v‘. : for an artificial example, whose points are tight to an oscillating curve at the left
. but loose to it on the right. Exhibit C2 (Friedman’s Figure 2a) shows the resulting
Ly composite smooth.
)
Q“ ')
',.::;::' As was to be expected, since the smooths are based on untwiced locally-linear
,-’:- - pon-robust fits, the woofer smooth fails to track hills and dales to any reasonable
00
"E': degree. It seems “a poor show® to use so unsatisfactory a smooth as competitor in
4 ) :
::!:'. the cross-validation. At least two natural cures are at hand.
%) We may twice ( or maybe thrice) the woofer. [We can do this without
wdar
::;:j increasing computing time by calculating the smooth at only every 3rd or 4th
Ry -
x-value, with the possible exception of x's near the boundaries. Since the
- woofer’s span is n/2, we do not need closer detail, and can complete the calcula-
g’:j tion by linear interpolation.]
£
heh *2) We may (a) fit a straight line, and (b) apply the woofer, then writing each
R observed value as
)
i
A
oy observed = (1 + K;) (woofer) - K; (straight line)
with a different K; for each data point we can smooth the values of K; to obtain
CRAY .
'J: : expansion factors, K; , and then a candidate smooth from
Ly
vy - -
Eads smooth = ( 1 + K, ) (woofer ) - K, (straight line).
«.;:;..: (Limiting | K; | to €2 will probably help)
)
e .
::;:: Either of these techniques should produce a reasonably improved candidate.
!t ‘u‘
i The middler (midrange) smooth does quite well in the example — although it
[ »
_:i;.
B
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J "'{ ) Friedman's PFigure 2b
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A . exhibit C2
Friedman's Figure 2a
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P o o v

seems unnecessarily rough. On the one hand, we might like to hope for a still better
fit by (a) applying the middler to the rough from the modified woofer, and (b) taking
A the (modified) candidate smooth as

! smooth by woofer PLUS smooth by middler of rough by woofer.

Y On the other, we might gain a little by detrivializing the candidate smooth (original
, or modified). Doing both could be a reasonable investment.

The tweeter smooth is mainly uncomfortable in terms of its irregularity.
, Detrivializing with Dy, D3 and then Dy;), in that order, should do no harm — and

might well do good. Applying the tweeter to residuals from the middler smooth
might also be desirable.

X With 3 improved candidates, we can expect to do quite well by applying the

Friedman technology of linearly combining candidates (his pp.8-9). It will probably

be wise to smooth ( (| r; 3) |) ¥ ? rather than | ry) (J) | against J, however. (Since

, we plan to get final visual smoothness by detrivialization, we ought not to have any

P need for a "bass (tone) control” (Friedman, pp. 9-10). We can thus avoid the
difficulties shown in Friedman’s figure 4b.)

; ssssss C2. Curvature adjustment? ssssss

It may be that enough twicing was proposed in the last section to take care of

the failure of "locally-linear® fits to allow for curvature. And it may not be that

- T LY

this is not so. Certainly the raw woofer is badly enough subject to curvature bias,
that, if this is not fixed — for instance by either of the methods suggested in the last

section — we should make some explicit allowance for curvature.

One way to do this is tos

; 1) find a high-grade visually-smooth smoothing {z,},
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exhibit C3
Friedman's Figure 4b
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2) reapply the whole smoothing process to {z,} obtaining (Sz), ,
3) make a bias adjustment for the shift (Sz),-z,, which means taking

as a bias-adjusted smooth.

While this last step may seem quite different from “twicing”, a little algebrs is

illuminating: If z = Sy, then Sz = SSy, and 2z - Sz = 2Sy - SSy which approximates

S(2y - Sy) = S(y + Ry)

which approximates
Sy + SRy = result of twicing.

Both approximations would of course be exact equalities if S were superposable.

We do not yet have enough experience to know whether (or when) to prefer 2z
- Sz to the result of twicing. (Even a selected convex linear combination of the two
might be in order.)

In doing (2), it may be desirable to force the wse of the same mixture of
amooths, J(X) as was used in getting {z,}.

sssss (3 Improving Cleveland’s loweas *%%%¢
As Cleveland’s figures B and C clearly show:

1) Lowess is likely to benefit by further smoothing in the small (perhaps Dys)

then Dy, then Dy if the smooth is evaluated at 50-100 equispaced points).

2) We may want to limit the number of internal extremes in our smooth.

Re point 2, his figure C seems to have 9 such —~ a smoothed-in-the-gmall version
seems likely to retain S or 7 such — for myelf there are many instances (most
mnooths of circumstance response, for example) where 1 would like to limit the
number of internal extremes to 0, € 1 or € 2 — or, often, to each of these in turn.
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(Time series smoothing or image smoothing would typically not call for such a limi-
tation.)

Cleveland discusses, giving no detail for his algorithm, again on page 834, but
oin the lower left) the use of cross-validation to choose f. It would seem easy to
modify the calculation to limit the number of internal extremes, after micropolish-
ing, t0 0, €1, or €2 (presumably available for f sufficiently close to 1). [The prob-
able usefulness of such constrained cross-validation is no evidence against the possi-

ble existence of still better smooths subject to such constraints.]

At page 831 (lower right), Cleveland raises "the danger of inappropriate inter-
polation” when smoothed points are joined by straight lines. This is less of a worry
than it might be, since Cleveland has just suggested calculating the fitted points at
equal x-spacing. It can probably be changed from a loss to a gain by requiring con-

nection if and only if, for the two adjacent points in question

| slope | €med { |slope | all pairs of adjacent points)
(If two adjacent segments are 1o be omitted the intermediate point should be shown with a
distinctive character.)

All in all, lowess should be reasonably satisfactory in its original form — and

even more 30 modified. Its major disadvantages seem to be
a) roughness in the small, AND

b) no provision for limiting the number of internal extremes.

sssss  XH a possibility *sess

When we look at Cleveland’s Figure C, and remember the Beveridge series, we
mwmpudtou-ymmal&hﬁon. Exhibit C4 shows:

1) points "read off the curve” for his figure C (symbol "x*)

B S T RS A G AR A LA RS N (S RLL LASAARA TN
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read from his gtaﬁ:

*figure C*

exhibit C4

xH and xH smoothing of Cleveland'
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S 2) XH points, where H = (1/4, 1/2, 1/4) irrespective of spacing of extremes
. (symbol® - *)

22

3) XH, where H averages one extreme with the linear interpolate of the adja-

cent extremes (symbol * + *)

2

4) various broken lines

' uk

It does seem that lowess with a small value of f may be usefully XH'd. (What

b
.-

to do near the ends is unclear.)
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